RFP_Analyzer_Agent / utils /database.py
cryogenic22's picture
Update utils/database.py
b39c0ad verified
# utils/database.py
# Update the imports first
from langchain_community.chat_models import ChatOpenAI
from langchain_core.messages import (
HumanMessage,
AIMessage,
SystemMessage,
BaseMessage
)
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import RunnablePassthrough
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.agents import AgentExecutor, Tool, create_openai_tools_agent
from langchain.agents.format_scratchpad.tools import format_to_tool_messages
from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from langchain.vectorstores import FAISS
import os
import streamlit as st
import sqlite3
import traceback
import time
import io
import tempfile
from sqlite3 import Error
from threading import Lock
from typing import Dict, List, Optional, Any
from datetime import datetime
from threading import Lock
# Create a lock for database connection
conn_lock = Lock()
def create_connection(db_file):
"""
Create a database connection to the SQLite database.
Args:
db_file (str): Path to the SQLite database file.
Returns:
sqlite3.Connection: Database connection object or None if an error occurs.
"""
conn = None
try:
conn = sqlite3.connect(db_file, check_same_thread=False)
return conn
except Error as e:
st.error("Failed to connect to database. Please try again or contact support.")
return None
def create_connection(db_file: str) -> Optional[sqlite3.Connection]:
"""Create a database connection."""
try:
conn = sqlite3.connect(db_file, check_same_thread=False)
return conn
except sqlite3.Error as e:
st.error(f"Error connecting to database: {e}")
return None
# utils/database.py
# Add this version of create_tables (replacing the existing one)
# utils/database.py
def create_tables(conn: sqlite3.Connection) -> None:
"""Create all necessary tables in the database."""
try:
with conn_lock:
cursor = conn.cursor()
# Force create collections tables first
collections_tables = [
'''
CREATE TABLE IF NOT EXISTS collections (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL UNIQUE,
description TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''',
'''
CREATE TABLE IF NOT EXISTS document_collections (
document_id INTEGER,
collection_id INTEGER,
added_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (document_id, collection_id),
FOREIGN KEY (document_id) REFERENCES documents (id) ON DELETE CASCADE,
FOREIGN KEY (collection_id) REFERENCES collections (id) ON DELETE CASCADE
)
'''
]
# Execute collections tables creation separately
for table_sql in collections_tables:
try:
cursor.execute(table_sql)
conn.commit()
except sqlite3.Error as e:
st.error(f"Error creating collections table: {e}")
st.error(f"SQL that failed: {table_sql}")
raise
# Create other tables
other_tables = [
'''
CREATE TABLE IF NOT EXISTS documents (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
content TEXT NOT NULL,
upload_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''',
'''
CREATE TABLE IF NOT EXISTS queries (
id INTEGER PRIMARY KEY AUTOINCREMENT,
query TEXT NOT NULL,
response TEXT NOT NULL,
document_id INTEGER,
query_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (document_id) REFERENCES documents (id) ON DELETE CASCADE
)
''',
'''
CREATE TABLE IF NOT EXISTS annotations (
id INTEGER PRIMARY KEY AUTOINCREMENT,
document_id INTEGER NOT NULL,
annotation TEXT NOT NULL,
page_number INTEGER,
annotation_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (document_id) REFERENCES documents (id) ON DELETE CASCADE
)
'''
]
# Execute other tables creation
for table_sql in other_tables:
try:
cursor.execute(table_sql)
conn.commit()
except sqlite3.Error as e:
st.error(f"Error creating table: {e}")
st.error(f"SQL that failed: {table_sql}")
raise
# Create indices
indices = [
'CREATE INDEX IF NOT EXISTS idx_doc_name ON documents(name)',
'CREATE INDEX IF NOT EXISTS idx_collection_name ON collections(name)',
'CREATE INDEX IF NOT EXISTS idx_doc_collections ON document_collections(collection_id)'
]
# Execute indices creation
for index_sql in indices:
try:
cursor.execute(index_sql)
conn.commit()
except sqlite3.Error as e:
st.error(f"Error creating index: {e}")
st.error(f"SQL that failed: {index_sql}")
# Verify collections table was created
cursor.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='collections'")
if not cursor.fetchone():
st.error("Failed to create collections table despite no errors")
raise Exception("Collections table creation failed silently")
conn.commit()
except sqlite3.Error as e:
st.error(f"Error in create_tables: {e}")
raise
except Exception as e:
st.error(f"Unexpected error in create_tables: {e}")
raise
def create_chat_tables(conn: sqlite3.Connection) -> None:
"""Create necessary tables for chat management."""
try:
with conn_lock:
cursor = conn.cursor()
# Create tags table first
cursor.execute('''
CREATE TABLE IF NOT EXISTS document_tags (
id INTEGER PRIMARY KEY AUTOINCREMENT,
document_id INTEGER NOT NULL,
tag TEXT NOT NULL,
confidence FLOAT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (document_id) REFERENCES documents (id) ON DELETE CASCADE,
UNIQUE(document_id, tag)
)
''')
# Create chats table with collection_id
cursor.execute('''
CREATE TABLE IF NOT EXISTS chats (
id INTEGER PRIMARY KEY AUTOINCREMENT,
title TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
last_updated TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
collection_id INTEGER,
FOREIGN KEY (collection_id) REFERENCES collections (id) ON DELETE SET NULL
)
''')
# Create chat messages table
cursor.execute('''
CREATE TABLE IF NOT EXISTS chat_messages (
id INTEGER PRIMARY KEY AUTOINCREMENT,
chat_id INTEGER NOT NULL,
role TEXT NOT NULL,
content TEXT NOT NULL,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
metadata TEXT,
FOREIGN KEY (chat_id) REFERENCES chats (id) ON DELETE CASCADE
)
''')
conn.commit()
except sqlite3.Error as e:
st.error(f"Error creating chat tables: {e}")
raise
async def generate_document_tags(content: str) -> List[str]:
"""Generate tags for a document using AI."""
try:
llm = ChatOpenAI(temperature=0.2, model="gpt-3.5-turbo")
prompt = """Analyze the following document content and generate relevant tags/keywords.
Focus on key themes, topics, and important terminology.
Return only the tags as a comma-separated list.
Content: {content}"""
response = await llm.ainvoke(prompt.format(content=content[:2000])) # Use first 2000 chars
tags = [tag.strip() for tag in response.split(',')]
return tags
except Exception as e:
st.error(f"Error generating tags: {e}")
return []
def generate_document_tags(content: str) -> List[str]:
"""Generate tags for a document using AI."""
try:
llm = ChatOpenAI(temperature=0.2, model="gpt-3.5-turbo")
prompt = """Analyze the following document content and generate relevant tags/keywords.
Focus on key themes, topics, and important terminology.
Return only the tags as a comma-separated list.
Content: {content}"""
response = llm.invoke([
SystemMessage(content="You are a document analysis assistant. Generate relevant tags as a comma-separated list only."),
HumanMessage(content=prompt.format(content=content[:2000]))
])
# Extract content from the AI message
tags_text = response.content
# Split the comma-separated string into a list
tags = [tag.strip() for tag in tags_text.split(',')]
return tags
except Exception as e:
st.error(f"Error generating tags: {e}")
return []
def add_document_to_collection(conn: sqlite3.Connection, document_id: int, collection_id: int) -> bool:
"""Link a document to a collection."""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
INSERT OR IGNORE INTO document_collections (document_id, collection_id)
VALUES (?, ?)
''', (document_id, collection_id))
conn.commit()
return True
except sqlite3.Error as e:
st.error(f"Error linking document to collection: {e}")
return False
def get_collection_documents(conn: sqlite3.Connection, collection_id: int) -> List[Dict]:
"""Get all documents in a collection."""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
SELECT
d.id,
d.name,
d.content,
d.upload_date
FROM documents d
JOIN document_collections dc ON d.id = dc.document_id
WHERE dc.collection_id = ?
ORDER BY d.upload_date DESC
''', (collection_id,))
documents = []
for row in cursor.fetchall():
documents.append({
'id': row[0],
'name': row[1],
'content': row[2],
'upload_date': row[3]
})
return documents
except sqlite3.Error as e:
st.error(f"Error retrieving collection documents: {e}")
return []
def get_collections(conn: sqlite3.Connection) -> List[Dict]:
"""Get all collections with document counts."""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
SELECT
c.id,
c.name,
c.description,
c.created_at,
COUNT(DISTINCT dc.document_id) as doc_count
FROM collections c
LEFT JOIN document_collections dc ON c.id = dc.collection_id
GROUP BY c.id
ORDER BY c.name
''')
collections = []
for row in cursor.fetchall():
collections.append({
'id': row[0],
'name': row[1],
'description': row[2],
'created_at': row[3],
'doc_count': row[4]
})
return collections
except sqlite3.Error as e:
st.error(f"Error retrieving collections: {e}")
return []
def add_document_tags(conn: sqlite3.Connection, document_id: int, tags: List[str]) -> bool:
"""Add tags to a document."""
try:
with conn_lock:
cursor = conn.cursor()
for tag in tags:
cursor.execute('''
INSERT OR IGNORE INTO document_tags (document_id, tag)
VALUES (?, ?)
''', (document_id, tag))
conn.commit()
return True
except sqlite3.Error as e:
st.error(f"Error adding tags: {e}")
return False
def get_document_tags(conn: sqlite3.Connection, document_id: int) -> List[str]:
"""Get all tags for a document."""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
SELECT tag FROM document_tags
WHERE document_id = ?
ORDER BY tag
''', (document_id,))
return [row[0] for row in cursor.fetchall()]
except sqlite3.Error as e:
st.error(f"Error retrieving tags: {e}")
return []
def search_documents_in_collection(conn: sqlite3.Connection, collection_id: int, query: str) -> List[Dict]:
"""Search for documents within a collection."""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
SELECT d.*
FROM documents d
JOIN document_collections dc ON d.id = dc.document_id
WHERE dc.collection_id = ?
AND (d.name LIKE ? OR d.content LIKE ?)
''', (collection_id, f'%{query}%', f'%{query}%'))
return [dict(row) for row in cursor.fetchall()]
except sqlite3.Error as e:
st.error(f"Error searching documents: {e}")
return []
def force_recreate_collections_tables(conn: sqlite3.Connection) -> bool:
"""Force recreate collections tables if they're missing."""
try:
with conn_lock:
cursor = conn.cursor()
# Drop existing tables if they exist
cursor.execute("DROP TABLE IF EXISTS document_collections")
cursor.execute("DROP TABLE IF EXISTS collections")
# Create collections table
cursor.execute('''
CREATE TABLE collections (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL UNIQUE,
description TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''')
# Create document_collections table
cursor.execute('''
CREATE TABLE document_collections (
document_id INTEGER,
collection_id INTEGER,
added_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (document_id, collection_id),
FOREIGN KEY (document_id) REFERENCES documents (id) ON DELETE CASCADE,
FOREIGN KEY (collection_id) REFERENCES collections (id) ON DELETE CASCADE
)
''')
# Create indices
cursor.execute('CREATE INDEX IF NOT EXISTS idx_collection_name ON collections(name)')
cursor.execute('CREATE INDEX IF NOT EXISTS idx_doc_collections ON document_collections(collection_id)')
conn.commit()
return True
except sqlite3.Error as e:
st.error(f"Error recreating collections tables: {e}")
return False
def get_existing_vector_store(document_ids: List[int]) -> Optional[FAISS]:
"""Retrieve existing vector store if available."""
try:
if st.session_state.get('vector_store'):
current_docs = set(document_ids)
stored_docs = set(
metadata['document_id']
for metadata in st.session_state.vector_store.docstore.get_all_metadatas()
)
# If the document sets match, reuse existing vector store
if current_docs == stored_docs:
return st.session_state.vector_store
return None
except Exception as e:
st.error(f"Error checking vector store: {e}")
return None
def get_uncategorized_documents(conn: sqlite3.Connection) -> List[Dict]:
"""Get documents that aren't in any collection."""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
SELECT
d.id,
d.name,
d.content,
d.upload_date
FROM documents d
LEFT JOIN document_collections dc ON d.id = dc.document_id
WHERE dc.collection_id IS NULL
ORDER BY d.upload_date DESC
''')
return [{
'id': row[0],
'name': row[1],
'content': row[2],
'upload_date': row[3],
'collections': []
} for row in cursor.fetchall()]
except sqlite3.Error as e:
st.error(f"Error retrieving uncategorized documents: {e}")
return []
def get_documents_for_chat(conn: sqlite3.Connection, collection_id: Optional[int] = None) -> List[Dict]:
"""Get documents for chat, either from a collection or all documents."""
try:
with conn_lock:
cursor = conn.cursor()
if collection_id:
cursor.execute('''
SELECT
d.id,
d.name,
d.content,
d.upload_date
FROM documents d
JOIN document_collections dc ON d.id = dc.document_id
WHERE dc.collection_id = ?
ORDER BY d.upload_date DESC
''', (collection_id,))
else:
cursor.execute('''
SELECT
d.id,
d.name,
d.content,
d.upload_date
FROM documents d
ORDER BY d.upload_date DESC
''')
return [{
'id': row[0],
'name': row[1],
'content': row[2],
'upload_date': row[3]
} for row in cursor.fetchall()]
except sqlite3.Error as e:
st.error(f"Error retrieving documents for chat: {e}")
return []
def get_all_documents(conn: sqlite3.Connection) -> List[Dict]:
"""Get all documents with their metadata and collections."""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
SELECT
d.id,
d.name,
d.content,
d.upload_date,
GROUP_CONCAT(c.name) as collections
FROM documents d
LEFT JOIN document_collections dc ON d.id = dc.document_id
LEFT JOIN collections c ON dc.collection_id = c.id
GROUP BY d.id
ORDER BY d.upload_date DESC
''')
documents = []
for row in cursor.fetchall():
documents.append({
'id': row[0],
'name': row[1],
'content': row[2],
'upload_date': row[3],
'collections': row[4].split(',') if row[4] else []
})
return documents
except sqlite3.Error as e:
st.error(f"Error retrieving documents: {e}")
return []
def get_document_queries(conn: sqlite3.Connection, document_id: int) -> List[Dict]:
"""Get all queries associated with a document."""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
SELECT id, query, response, query_date
FROM queries
WHERE document_id = ?
ORDER BY query_date DESC
''', (document_id,))
queries = []
for row in cursor.fetchall():
queries.append({
'id': row[0],
'query': row[1],
'response': row[2],
'query_date': row[3]
})
return queries
except sqlite3.Error as e:
st.error(f"Error retrieving document queries: {e}")
return []
def add_query(conn: sqlite3.Connection, query: str, response: str, document_id: Optional[int] = None) -> bool:
"""Add a new query and its response."""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
INSERT INTO queries (query, response, document_id)
VALUES (?, ?, ?)
''', (query, response, document_id))
conn.commit()
return True
except sqlite3.Error as e:
st.error(f"Error adding query: {e}")
return False
def create_chat_tables(conn: sqlite3.Connection) -> None:
"""Create necessary tables for chat management."""
try:
with conn_lock:
cursor = conn.cursor()
# Create chats table
cursor.execute('''
CREATE TABLE IF NOT EXISTS chats (
id INTEGER PRIMARY KEY AUTOINCREMENT,
title TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
last_updated TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
collection_id INTEGER,
FOREIGN KEY (collection_id) REFERENCES collections (id) ON DELETE SET NULL
)
''')
# Create chat messages table
cursor.execute('''
CREATE TABLE IF NOT EXISTS chat_messages (
id INTEGER PRIMARY KEY AUTOINCREMENT,
chat_id INTEGER NOT NULL,
role TEXT NOT NULL,
content TEXT NOT NULL,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
metadata TEXT, -- Store metadata as JSON string
FOREIGN KEY (chat_id) REFERENCES chats (id) ON DELETE CASCADE
)
''')
conn.commit()
except sqlite3.Error as e:
st.error(f"Error creating chat tables: {e}")
raise
def create_new_chat(conn: sqlite3.Connection, title: str, collection_id: Optional[int] = None) -> Optional[int]:
"""Create a new chat session."""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
INSERT INTO chats (title, collection_id, created_at, last_updated)
VALUES (?, ?, CURRENT_TIMESTAMP, CURRENT_TIMESTAMP)
''', (title, collection_id))
conn.commit()
return cursor.lastrowid
except sqlite3.Error as e:
st.error(f"Error creating new chat: {e}")
return None
def save_chat_message(conn: sqlite3.Connection,
chat_id: int,
role: str,
content: str,
metadata: Optional[Dict] = None) -> Optional[int]:
"""Save a chat message to the database."""
try:
with conn_lock:
cursor = conn.cursor()
# Convert metadata to JSON string if present
metadata_str = json.dumps(metadata) if metadata else None
# Insert message
cursor.execute('''
INSERT INTO chat_messages (chat_id, role, content, metadata, timestamp)
VALUES (?, ?, ?, ?, CURRENT_TIMESTAMP)
''', (chat_id, role, content, metadata_str))
# Update chat last_updated timestamp
cursor.execute('''
UPDATE chats
SET last_updated = CURRENT_TIMESTAMP
WHERE id = ?
''', (chat_id,))
conn.commit()
return cursor.lastrowid
except sqlite3.Error as e:
st.error(f"Error saving chat message: {e}")
return None
def get_all_chats(conn: sqlite3.Connection) -> List[Dict]:
"""Retrieve all chat sessions."""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
SELECT
c.id,
c.title,
c.created_at,
c.last_updated,
c.collection_id,
COUNT(m.id) as message_count,
MAX(m.timestamp) as last_message
FROM chats c
LEFT JOIN chat_messages m ON c.id = m.chat_id
GROUP BY c.id
ORDER BY c.last_updated DESC
''')
chats = []
for row in cursor.fetchall():
chats.append({
'id': row[0],
'title': row[1],
'created_at': row[2],
'last_updated': row[3],
'collection_id': row[4],
'message_count': row[5],
'last_message': row[6]
})
return chats
except sqlite3.Error as e:
st.error(f"Error retrieving chats: {e}")
return []
def get_chat_messages(conn: sqlite3.Connection, chat_id: int) -> List[Dict]:
"""Retrieve all messages for a specific chat."""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
SELECT id, role, content, metadata, timestamp
FROM chat_messages
WHERE chat_id = ?
ORDER BY timestamp
''', (chat_id,))
messages = []
for row in cursor.fetchall():
# Parse metadata JSON if present
metadata = json.loads(row[3]) if row[3] else None
# Convert to appropriate message type
if row[1] == 'human':
message = HumanMessage(content=row[2])
else:
message = AIMessage(content=row[2], additional_kwargs={'metadata': metadata})
messages.append(message)
return messages
except sqlite3.Error as e:
st.error(f"Error retrieving chat messages: {e}")
return []
def delete_chat(conn: sqlite3.Connection, chat_id: int) -> bool:
"""Delete a chat session and all its messages."""
try:
with conn_lock:
cursor = conn.cursor()
# Messages will be automatically deleted due to CASCADE
cursor.execute('DELETE FROM chats WHERE id = ?', (chat_id,))
conn.commit()
return True
except sqlite3.Error as e:
st.error(f"Error deleting chat: {e}")
return False
def update_chat_title(conn: sqlite3.Connection, chat_id: int, new_title: str) -> bool:
"""Update the title of a chat session."""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
UPDATE chats
SET title = ?, last_updated = CURRENT_TIMESTAMP
WHERE id = ?
''', (new_title, chat_id))
conn.commit()
return True
except sqlite3.Error as e:
st.error(f"Error updating chat title: {e}")
return False
def get_chat_by_id(conn: sqlite3.Connection, chat_id: int) -> Optional[Dict]:
"""Retrieve a specific chat session by ID."""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
SELECT
c.id,
c.title,
c.created_at,
c.last_updated,
c.collection_id,
COUNT(m.id) as message_count
FROM chats c
LEFT JOIN chat_messages m ON c.id = m.chat_id
WHERE c.id = ?
GROUP BY c.id
''', (chat_id,))
row = cursor.fetchone()
if row:
return {
'id': row[0],
'title': row[1],
'created_at': row[2],
'last_updated': row[3],
'collection_id': row[4],
'message_count': row[5]
}
return None
except sqlite3.Error as e:
st.error(f"Error retrieving chat: {e}")
return None
def export_chat_history(conn: sqlite3.Connection, chat_id: int) -> Optional[Dict]:
"""Export a chat session with all its messages."""
try:
chat = get_chat_by_id(conn, chat_id)
if not chat:
return None
messages = get_chat_messages(conn, chat_id)
return {
'chat_info': chat,
'messages': [
{
'role': 'human' if isinstance(msg, HumanMessage) else 'assistant',
'content': msg.content,
'metadata': msg.additional_kwargs.get('metadata') if isinstance(msg, AIMessage) else None
}
for msg in messages
]
}
except Exception as e:
st.error(f"Error exporting chat history: {e}")
return None
def import_chat_history(conn: sqlite3.Connection, chat_data: Dict) -> Optional[int]:
"""Import a chat session from exported data."""
try:
with conn_lock:
# Create new chat
chat_id = create_new_chat(
conn,
chat_data['chat_info']['title'],
chat_data['chat_info'].get('collection_id')
)
if not chat_id:
return None
# Import messages
for msg in chat_data['messages']:
save_chat_message(
conn,
chat_id,
msg['role'],
msg['content'],
msg.get('metadata')
)
return chat_id
except Exception as e:
st.error(f"Error importing chat history: {e}")
return None
# utils/database.py
def create_chat_tables(conn):
"""Create tables for chat management."""
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS chats (
id INTEGER PRIMARY KEY AUTOINCREMENT,
title TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS chat_messages (
id INTEGER PRIMARY KEY AUTOINCREMENT,
chat_id INTEGER,
role TEXT NOT NULL,
content TEXT NOT NULL,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (chat_id) REFERENCES chats (id) ON DELETE CASCADE
)
''')
conn.commit()
def save_chat(conn, chat_title: str, messages: List[Dict]):
"""Save chat history."""
cursor = conn.cursor()
cursor.execute('INSERT INTO chats (title) VALUES (?)', (chat_title,))
chat_id = cursor.lastrowid
for msg in messages:
cursor.execute('''
INSERT INTO chat_messages (chat_id, role, content)
VALUES (?, ?, ?)
''', (chat_id, msg['role'], msg['content']))
conn.commit()
return chat_id
# components/chat.py
def display_chat_manager():
"""Display chat management interface."""
st.sidebar.markdown("### Chat Management")
# New chat button
if st.sidebar.button("New Chat"):
st.session_state.messages = []
st.session_state.current_chat_id = None
# Save current chat
if st.session_state.messages and st.sidebar.button("Save Chat"):
chat_title = st.sidebar.text_input("Chat Title",
value=f"Chat {datetime.now().strftime('%Y-%m-%d %H:%M')}")
if chat_title:
save_chat(st.session_state.db_conn, chat_title, st.session_state.messages)
st.sidebar.success("Chat saved!")
# Load previous chats
chats = get_all_chats(st.session_state.db_conn)
if chats:
st.sidebar.markdown("### Previous Chats")
for chat in chats:
if st.sidebar.button(f"📜 {chat['title']}", key=f"chat_{chat['id']}"):
st.session_state.messages = get_chat_messages(st.session_state.db_conn, chat['id'])
st.session_state.current_chat_id = chat['id']
st.rerun()
def add_annotation(conn: sqlite3.Connection, document_id: int, annotation: str, page_number: Optional[int] = None) -> bool:
"""Add an annotation to a document."""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
INSERT INTO annotations (document_id, annotation, page_number)
VALUES (?, ?, ?)
''', (document_id, annotation, page_number))
conn.commit()
return True
except sqlite3.Error as e:
st.error(f"Error adding annotation: {e}")
return False
def create_tables(conn):
"""
Create necessary tables in the database.
Args:
conn (sqlite3.Connection): SQLite database connection.
"""
try:
sql_create_documents_table = '''
CREATE TABLE IF NOT EXISTS documents (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
content TEXT NOT NULL,
upload_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
'''
sql_create_queries_table = '''
CREATE TABLE IF NOT EXISTS queries (
id INTEGER PRIMARY KEY AUTOINCREMENT,
query TEXT NOT NULL,
response TEXT NOT NULL,
document_id INTEGER,
query_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (document_id) REFERENCES documents (id)
);
'''
sql_create_annotations_table = '''
CREATE TABLE IF NOT EXISTS annotations (
id INTEGER PRIMARY KEY AUTOINCREMENT,
document_id INTEGER NOT NULL,
annotation TEXT NOT NULL,
page_number INTEGER,
annotation_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (document_id) REFERENCES documents (id)
);
'''
conn.execute(sql_create_documents_table)
conn.execute(sql_create_queries_table)
conn.execute(sql_create_annotations_table)
except Error as e:
st.error(f"Error: {e}")
def get_documents(conn):
"""
Retrieve all documents from the database.
Args:
conn (sqlite3.Connection): SQLite database connection.
Returns:
tuple: (list of document contents, list of document names).
"""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute("SELECT content, name FROM documents")
results = cursor.fetchall()
if not results:
return [], []
# Separate contents and names
document_contents = [row[0] for row in results]
document_names = [row[1] for row in results]
return document_contents, document_names
except Error as e:
st.error(f"Error retrieving documents: {e}")
return [], []
def insert_document(conn, name, content):
"""
Insert a new document into the database.
Args:
conn (sqlite3.Connection): SQLite database connection.
name (str): Name of the document.
content (str): Content of the document.
Returns:
int: ID of the inserted document, or None if insertion failed.
"""
try:
with conn_lock:
cursor = conn.cursor()
sql = '''INSERT INTO documents (name, content)
VALUES (?, ?)'''
cursor.execute(sql, (name, content))
conn.commit()
return cursor.lastrowid
except Error as e:
st.error(f"Error inserting document: {e}")
return None
def verify_database_tables(conn):
"""Verify that all required tables exist."""
try:
cursor = conn.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table'")
tables = [table[0] for table in cursor.fetchall()]
# If collections table doesn't exist, force recreate it
if 'collections' not in tables:
if not force_recreate_collections_tables(conn):
st.error("Failed to recreate collections tables!")
return 'collections' in tables
except Exception as e:
st.error(f"Error verifying tables: {e}")
return False
def verify_vector_store(vector_store):
"""
Verify that the vector store has documents loaded.
Args:
vector_store (FAISS): FAISS vector store instance.
Returns:
bool: True if vector store is properly initialized with documents.
"""
try:
# Try to perform a simple similarity search
test_results = vector_store.similarity_search("test", k=1)
return len(test_results) > 0
except Exception as e:
st.error(f"Vector store verification failed: {e}")
return False
def handle_document_upload(uploaded_files, **kwargs):
"""
Handle document upload with progress tracking and collection support.
Args:
uploaded_files (list): List of uploaded files
**kwargs: Additional arguments including:
- collection_id (int, optional): ID of the collection to add documents to
"""
try:
# Initialize session state variables if they don't exist
if 'qa_system' not in st.session_state:
st.session_state.qa_system = None
if 'vector_store' not in st.session_state:
st.session_state.vector_store = None
# Create progress containers
progress_container = st.empty()
status_container = st.empty()
details_container = st.empty()
# Initialize progress bar
progress_bar = progress_container.progress(0)
status_container.info("🔄 Initializing document processing...")
# Reset existing states
st.session_state.vector_store = None
st.session_state.qa_system = None
# Initialize embeddings (10% progress)
status_container.info("🔄 Initializing embeddings model...")
embeddings = get_embeddings_model()
if not embeddings:
status_container.error("❌ Failed to initialize embeddings model")
return False
progress_bar.progress(10)
# Process documents
all_chunks = []
documents = []
document_names = []
progress_per_file = 70 / len(uploaded_files)
current_progress = 10
collection_id = kwargs.get('collection_id')
for idx, uploaded_file in enumerate(uploaded_files):
file_name = uploaded_file.name
status_container.info(f"🔄 Processing document {idx + 1}/{len(uploaded_files)}: {file_name}")
# Create temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
tmp_file.write(uploaded_file.getvalue())
tmp_file.flush()
# Process document with chunking
chunks, content = process_document(tmp_file.name)
# Store in database
doc_id = insert_document(st.session_state.db_conn, file_name, content)
if not doc_id:
status_container.error(f"❌ Failed to store document: {file_name}")
continue
# Add to collection if specified
if collection_id:
if not add_document_to_collection(st.session_state.db_conn, doc_id, collection_id):
status_container.warning(f"⚠️ Failed to add document to collection: {file_name}")
# Add chunks with metadata
for chunk in chunks:
chunk.metadata.update({
"source": file_name,
"document_id": doc_id,
"collection_id": collection_id if collection_id else None
})
all_chunks.extend(chunks)
documents.append(content)
document_names.append(file_name)
current_progress += progress_per_file
progress_bar.progress(int(current_progress))
# Initialize vector store with chunks
status_container.info("🔄 Initializing vector store...")
vector_store = FAISS.from_documents(
all_chunks,
embeddings
)
# Verify vector store
status_container.info("🔄 Verifying document indexing...")
details_container.text("✨ Performing final checks...")
if not verify_vector_store(vector_store):
status_container.error("❌ Vector store verification failed")
return False
# Initialize QA system (90-100% progress)
status_container.info("🔄 Setting up QA system...")
qa_system = initialize_qa_system(vector_store)
if not qa_system:
status_container.error("❌ Failed to initialize QA system")
return False
# Store in session state
if collection_id:
if 'vector_stores' not in st.session_state:
st.session_state.vector_stores = {}
st.session_state.vector_stores[collection_id] = vector_store
else:
st.session_state.vector_store = vector_store
st.session_state.qa_system = qa_system
# Complete!
progress_bar.progress(100)
status_container.success("✅ Documents processed successfully!")
details_container.markdown(
f"""
🎉 **Ready to chat!**
- Documents processed: {len(documents)}
- Total content size: {sum(len(doc) for doc in documents) / 1024:.2f} KB
- {"Added to collection" if collection_id else "Processed as standalone documents"}
You can now start asking questions about your documents!
"""
)
# Add notification
st.balloons()
# Clean up progress display after 3 seconds
time.sleep(3)
progress_container.empty()
status_container.empty()
details_container.empty()
return True
except Exception as e:
st.error(f"❌ Error processing documents: {str(e)}")
if status_container:
status_container.error(traceback.format_exc())
# Reset states on error
st.session_state.vector_store = None
st.session_state.qa_system = None
st.session_state.chat_ready = False
return False
# Add these to your database.py file
def remove_from_collection(conn: sqlite3.Connection, document_id: int, collection_id: int) -> bool:
"""
Remove a document from a collection.
Args:
conn (sqlite3.Connection): Database connection
document_id (int): ID of the document to remove
collection_id (int): ID of the collection
Returns:
bool: True if successful
"""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
DELETE FROM document_collections
WHERE document_id = ? AND collection_id = ?
''', (document_id, collection_id))
conn.commit()
return True
except sqlite3.Error as e:
st.error(f"Error removing document from collection: {e}")
return False
def update_collection(conn: sqlite3.Connection, collection_id: int, name: Optional[str] = None,
description: Optional[str] = None) -> bool:
"""
Update collection details.
Args:
conn (sqlite3.Connection): Database connection
collection_id (int): ID of the collection to update
name (Optional[str]): New name for the collection
description (Optional[str]): New description for the collection
Returns:
bool: True if successful
"""
try:
with conn_lock:
updates = []
params = []
if name is not None:
updates.append("name = ?")
params.append(name)
if description is not None:
updates.append("description = ?")
params.append(description)
if not updates:
return True # Nothing to update
params.append(collection_id)
cursor = conn.cursor()
cursor.execute(f'''
UPDATE collections
SET {", ".join(updates)}
WHERE id = ?
''', params)
conn.commit()
return True
except sqlite3.Error as e:
st.error(f"Error updating collection: {e}")
return False
def search_documents(conn: sqlite3.Connection, query: str,
collection_id: Optional[int] = None,
filters: Optional[Dict] = None) -> List[Dict]:
"""
Search documents using fuzzy matching and filters.
Args:
conn (sqlite3.Connection): Database connection
query (str): Search query
collection_id (Optional[int]): Filter by collection
filters (Optional[Dict]): Additional filters
Returns:
List[Dict]: List of matching documents
"""
try:
with conn_lock:
cursor = conn.cursor()
# Base query
sql = """
SELECT DISTINCT
d.id,
d.name,
d.content,
d.upload_date,
GROUP_CONCAT(c.name) as collections
FROM documents d
LEFT JOIN document_collections dc ON d.id = dc.document_id
LEFT JOIN collections c ON dc.collection_id = c.id
"""
params = []
where_clauses = []
# Add collection filter if specified
if collection_id:
where_clauses.append("dc.collection_id = ?")
params.append(collection_id)
# Add date filters if specified
if filters and 'date_range' in filters:
start_date, end_date = filters['date_range']
where_clauses.append("d.upload_date BETWEEN ? AND ?")
params.extend([start_date, end_date])
# Add text search
if query:
where_clauses.append("(d.name LIKE ? OR d.content LIKE ?)")
search_term = f"%{query}%"
params.extend([search_term, search_term])
# Combine WHERE clauses
if where_clauses:
sql += " WHERE " + " AND ".join(where_clauses)
sql += " GROUP BY d.id ORDER BY d.upload_date DESC"
# Execute query
cursor.execute(sql, params)
documents = []
for row in cursor.fetchall():
documents.append({
'id': row[0],
'name': row[1],
'content': row[2],
'upload_date': row[3],
'collections': row[4].split(',') if row[4] else []
})
return documents
except sqlite3.Error as e:
st.error(f"Error searching documents: {e}")
return []
def get_all_documents(conn: sqlite3.Connection) -> List[Dict]:
"""
Get all documents with their metadata and collection info.
Args:
conn (sqlite3.Connection): Database connection
Returns:
List[Dict]: List of documents with their metadata
"""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
SELECT
d.id,
d.name,
d.content,
d.upload_date,
GROUP_CONCAT(c.name) as collections
FROM documents d
LEFT JOIN document_collections dc ON d.id = dc.document_id
LEFT JOIN collections c ON dc.collection_id = c.id
GROUP BY d.id
ORDER BY d.upload_date DESC
''')
documents = []
for row in cursor.fetchall():
documents.append({
'id': row[0],
'name': row[1],
'content': row[2],
'upload_date': row[3],
'collections': row[4].split(',') if row[4] else []
})
return documents
except sqlite3.Error as e:
st.error(f"Error retrieving documents: {e}")
return []
def get_document_by_id(conn: sqlite3.Connection, document_id: int) -> Optional[Dict]:
"""
Get a single document by its ID.
Args:
conn (sqlite3.Connection): Database connection
document_id (int): ID of the document to retrieve
Returns:
Optional[Dict]: Document data if found, None otherwise
"""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
SELECT
d.id,
d.name,
d.content,
d.upload_date,
GROUP_CONCAT(c.name) as collections
FROM documents d
LEFT JOIN document_collections dc ON d.id = dc.document_id
LEFT JOIN collections c ON dc.collection_id = c.id
WHERE d.id = ?
GROUP BY d.id
''', (document_id,))
row = cursor.fetchone()
if row:
return {
'id': row[0],
'name': row[1],
'content': row[2],
'upload_date': row[3],
'collections': row[4].split(',') if row[4] else []
}
return None
except sqlite3.Error as e:
st.error(f"Error retrieving document: {e}")
return None
def get_recent_documents(conn: sqlite3.Connection, limit: int = 5) -> List[Dict]:
"""
Get most recently uploaded documents.
Args:
conn (sqlite3.Connection): Database connection
limit (int): Maximum number of documents to return
Returns:
List[Dict]: List of recent documents
"""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
SELECT
d.id,
d.name,
d.content,
d.upload_date,
GROUP_CONCAT(c.name) as collections
FROM documents d
LEFT JOIN document_collections dc ON d.id = dc.document_id
LEFT JOIN collections c ON dc.collection_id = c.id
GROUP BY d.id
ORDER BY d.upload_date DESC
LIMIT ?
''', (limit,))
documents = []
for row in cursor.fetchall():
documents.append({
'id': row[0],
'name': row[1],
'content': row[2],
'upload_date': row[3],
'collections': row[4].split(',') if row[4] else []
})
return documents
except sqlite3.Error as e:
st.error(f"Error retrieving recent documents: {e}")
return []
def get_collections(conn: sqlite3.Connection) -> List[Dict]:
"""
Get all collections with their document counts.
Args:
conn (sqlite3.Connection): Database connection
Returns:
List[Dict]: List of collections with metadata
"""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
SELECT
c.id,
c.name,
c.description,
c.created_at,
COUNT(DISTINCT dc.document_id) as doc_count
FROM collections c
LEFT JOIN document_collections dc ON c.id = dc.collection_id
GROUP BY c.id
ORDER BY c.name
''')
collections = []
for row in cursor.fetchall():
collections.append({
'id': row[0],
'name': row[1],
'description': row[2],
'created_at': row[3],
'doc_count': row[4]
})
return collections
except sqlite3.Error as e:
st.error(f"Error retrieving collections: {e}")
return []
def get_collection_documents(conn: sqlite3.Connection, collection_id: int) -> List[Dict]:
"""
Get all documents in a specific collection.
Args:
conn (sqlite3.Connection): Database connection
collection_id (int): ID of the collection
Returns:
List[Dict]: List of documents in the collection
"""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
SELECT
d.id,
d.name,
d.content,
d.upload_date
FROM documents d
JOIN document_collections dc ON d.id = dc.document_id
WHERE dc.collection_id = ?
ORDER BY d.upload_date DESC
''', (collection_id,))
documents = []
for row in cursor.fetchall():
documents.append({
'id': row[0],
'name': row[1],
'content': row[2],
'upload_date': row[3]
})
return documents
except sqlite3.Error as e:
st.error(f"Error retrieving collection documents: {e}")
return []
def create_collection(conn: sqlite3.Connection, name: str, description: str = "") -> Optional[int]:
"""
Create a new collection.
Args:
conn (sqlite3.Connection): Database connection
name (str): Name of the collection
description (str): Optional description
Returns:
Optional[int]: ID of the created collection if successful
"""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
INSERT INTO collections (name, description)
VALUES (?, ?)
''', (name, description))
conn.commit()
return cursor.lastrowid
except sqlite3.Error as e:
st.error(f"Error creating collection: {e}")
return None
def add_document_to_collection(conn: sqlite3.Connection, document_id: int, collection_id: int) -> bool:
"""
Add a document to a collection.
Args:
conn (sqlite3.Connection): Database connection
document_id (int): ID of the document
collection_id (int): ID of the collection
Returns:
bool: True if successful
"""
try:
with conn_lock:
cursor = conn.cursor()
cursor.execute('''
INSERT OR IGNORE INTO document_collections (document_id, collection_id)
VALUES (?, ?)
''', (document_id, collection_id))
conn.commit()
return True
except sqlite3.Error as e:
st.error(f"Error adding document to collection: {e}")
return False
def process_document(file_path):
"""
Process a PDF document with proper chunking.
Args:
file_path (str): Path to the PDF file
Returns:
tuple: (list of document chunks, full content of the document)
"""
# Load PDF
loader = PyPDFLoader(file_path)
documents = loader.load()
# Create text splitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
separators=["\n\n", "\n", " ", ""]
)
# Split documents into chunks
chunks = text_splitter.split_documents(documents)
# Extract full content for database storage
full_content = "\n".join(doc.page_content for doc in documents)
return chunks, full_content
def delete_collection(conn: sqlite3.Connection, collection_id: int) -> bool:
"""Delete a collection and its associations."""
try:
with conn_lock:
cursor = conn.cursor()
# Delete the collection's document associations first
cursor.execute('''
DELETE FROM document_collections
WHERE collection_id = ?
''', (collection_id,))
# Then delete the collection itself
cursor.execute('''
DELETE FROM collections
WHERE id = ?
''', (collection_id,))
conn.commit()
return True
except sqlite3.Error as e:
st.error(f"Error deleting collection: {e}")
return False
def display_vector_store_info():
"""
Display information about the current vector store state.
"""
if 'vector_store' not in st.session_state:
st.info("ℹ️ No documents loaded yet.")
return
try:
# Get the vector store from session state
vector_store = st.session_state.vector_store
# Get basic stats
test_query = vector_store.similarity_search("test", k=1)
doc_count = len(test_query)
# Create an expander for detailed info
with st.expander("📊 Knowledge Base Status"):
col1, col2 = st.columns(2)
with col1:
st.metric(
label="Documents Loaded",
value=doc_count
)
with col2:
st.metric(
label="System Status",
value="Ready" if verify_vector_store(vector_store) else "Not Ready"
)
# Display sample queries
if verify_vector_store(vector_store):
st.markdown("### 🔍 Sample Document Snippets")
sample_docs = vector_store.similarity_search("", k=3)
for i, doc in enumerate(sample_docs, 1):
with st.container():
st.markdown(f"**Snippet {i}:**")
st.text(doc.page_content[:200] + "...")
except Exception as e:
st.error(f"Error displaying vector store info: {e}")
st.error(traceback.format_exc())
def process_and_store_document(uploaded_file) -> Optional[int]:
"""
Process an uploaded document and store it in the database.
Args:
uploaded_file: Streamlit's UploadedFile object
Returns:
Optional[int]: The ID of the stored document if successful, None otherwise
"""
try:
# Create a temporary file to store the uploaded content
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
tmp_file.write(uploaded_file.getvalue())
tmp_file.flush()
# Load and process the PDF
loader = PyPDFLoader(tmp_file.name)
documents = loader.load()
# Create text splitter for processing
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
separators=["\n\n", "\n", " ", ""]
)
# Split documents into chunks
chunks = text_splitter.split_documents(documents)
# Extract full content for database storage
full_content = "\n".join(doc.page_content for doc in documents)
# Store in database
with st.session_state.db_conn as conn:
cursor = conn.cursor()
# Insert document
cursor.execute('''
INSERT INTO documents (name, content, upload_date)
VALUES (?, ?, ?)
''', (uploaded_file.name, full_content, datetime.now()))
# Get the document ID
document_id = cursor.lastrowid
conn.commit()
return document_id
except Exception as e:
st.error(f"Error processing document {uploaded_file.name}: {str(e)}")
import traceback
st.error(traceback.format_exc())
return None
finally:
# Clean up temporary file
import os
try:
os.unlink(tmp_file.name)
except:
pass
def get_document_content(conn: sqlite3.Connection, document_id: int) -> Optional[str]:
"""
Retrieve the content of a specific document.
Args:
conn: Database connection
document_id: ID of the document to retrieve
Returns:
Optional[str]: The document content if found, None otherwise
"""
try:
cursor = conn.cursor()
cursor.execute('''
SELECT content
FROM documents
WHERE id = ?
''', (document_id,))
result = cursor.fetchone()
return result[0] if result else None
except sqlite3.Error as e:
st.error(f"Error retrieving document content: {e}")
return None
def get_context_with_sources(retriever, query):
"""Get context with source documents."""
docs = retriever.get_relevant_documents(query)
formatted_docs = []
for doc in docs:
source = doc.metadata.get('source', 'Unknown source')
formatted_docs.append(f"\nFrom {source}:\n{doc.page_content}")
return "\n".join(formatted_docs)
def format_chat_history(chat_history):
"""Format chat history for the prompt."""
if not chat_history or not isinstance(chat_history, list):
return []
return [msg for msg in chat_history if isinstance(msg, (HumanMessage, AIMessage))]
def initialize_qa_system(vector_store):
"""Initialize QA system with optimized retrieval."""
try:
llm = ChatOpenAI(
temperature=0.5,
model_name="gpt-4",
max_tokens=4000,
api_key=os.environ.get("OPENAI_API_KEY")
)
# Optimize retriever settings
retriever = vector_store.as_retriever(
search_kwargs={
"k": 3,
"fetch_k": 5,
"include_metadata": True
}
)
# Create system prompt template
prompt = ChatPromptTemplate.from_messages([
("system", """
You are an expert consultant specializing in analyzing Request for Proposal (RFP) documents. Your goal is to assist users by providing clear, concise, and professional insights based on the content provided. Please adhere to the following guidelines:
Begin with a summary that highlights the key findings or answers the main query.
Use clear section headers to organize information logically.
Utilize bullet points for lists or complex information.
Cite specific sections or page numbers from the RFP document when referencing information.
Maintain professional formatting using Markdown.
Keep responses focused and directly related to the query.
Acknowledge when information falls outside the provided context.
Use formal and professional language.
Ensure accuracy and completeness in responses.
"""),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{input}\n\nContext: {context}")
])
# Create the chain
chain = (
{
"context": lambda x: get_context_with_sources(retriever, x["input"]),
"chat_history": lambda x: format_chat_history(x["chat_history"]),
"input": lambda x: x["input"]
}
| prompt
| llm
)
return chain
except Exception as e:
st.error(f"Error initializing QA system: {e}")
return None
# FAISS vector store initialization
def initialize_faiss(embeddings, documents, document_names):
"""
Initialize FAISS vector store.
Args:
embeddings (Embeddings): Embeddings model to use.
documents (list): List of document contents.
document_names (list): List of document names.
Returns:
FAISS: FAISS vector store instance or None if initialization fails.
"""
try:
from langchain.vectorstores import FAISS
vector_store = FAISS.from_texts(
documents,
embeddings,
metadatas=[{"source": name} for name in document_names],
)
return vector_store
except Exception as e:
st.error(f"Error initializing FAISS: {e}")
return None
# Embeddings model retrieval
@st.cache_resource
def get_embeddings_model():
"""
Get the embeddings model.
Returns:
Embeddings: Embeddings model instance or None if loading fails.
"""
try:
from langchain.embeddings import HuggingFaceEmbeddings
model_name = "sentence-transformers/all-MiniLM-L6-v2"
embeddings = HuggingFaceEmbeddings(model_name=model_name)
return embeddings
except Exception as e:
st.error(f"Error loading embeddings model: {e}")
return None