Fast_api / vps /compute_vps_score.py
mulasagg's picture
API optimizations
aef3b1e
from .vps import calculate_vps # Your file where calc_srs, calculate_pas, calculate_rcs, calculate_vps live
import librosa
import numpy as np
import math
import pyworld
from filler_count.filler_score import analyze_fillers
def compute_vps_score(file_path: str, whisper_model) -> dict:
"""
Compute VPS (Voice Pacing Score) and its components from a speech sample.
Args:
file_path (str): Path to the audio file.
whisper_model: Transcription model (e.g., OpenAI Whisper or faster-whisper)
Returns:
dict: A dictionary containing VPS, SRS, PAS, RCS, and component scores.
"""
# Transcribe
result = whisper_model.transcribe(file_path, word_timestamps=False, fp16=False)
transcript = result.get("text", "").strip()
segments = result.get("segments", [])
# Validate early
if not transcript or not segments:
raise ValueError("Empty transcript or segments from Whisper.")
# Filler count
result = analyze_fillers(file_path,'base',transcript)
filler_count = result.get("filler_count", 0)
# Load audio
y, sr = librosa.load(file_path, sr=None)
duration = len(y) / sr if sr else 0.0
if duration <= 0:
raise ValueError("Audio duration invalid or zero.")
# Calculate pitch variation (in semitones) using pyworld
_f0, t = pyworld.harvest(y.astype(np.float64), sr, f0_floor=80.0, f0_ceil=400.0, frame_period=1000 * 256 / sr)
f0 = pyworld.stonemask(y.astype(np.float64), _f0, t, sr)
voiced_f0 = f0[f0 > 0]
voiced_f0 = voiced_f0[
(voiced_f0 > np.percentile(voiced_f0, 5)) &
(voiced_f0 < np.percentile(voiced_f0, 95))
]
pitch_variation = 0.0
if voiced_f0.size > 0:
median_f0 = np.median(voiced_f0)
median_f0 = max(median_f0, 1e-6)
semitone_diffs = 12 * np.log2(voiced_f0 / median_f0)
pitch_variation = float(np.std(semitone_diffs))
# Pause analysis
long_pause_count = 0
if segments:
for i in range(len(segments) - 1):
pause_dur = segments[i + 1]["start"] - segments[i]["end"]
if pause_dur > 1.0:
long_pause_count += 1
# Beginning and end
if segments[0]["start"] > 1.0:
long_pause_count += 1
if duration - segments[-1]["end"] > 1.0:
long_pause_count += 1
# WPM
word_count = len(transcript.split())
words_per_min = (word_count / duration) * 60.0 if duration > 0 else 0.0
# Calculate VPS and components
vps_result = calculate_vps(
transcript=transcript,
segments=segments,
filler_count=filler_count,
duration=duration,
wpm=words_per_min,
long_pause_count=long_pause_count,
pitch_variation=pitch_variation,
y=y,
sr=sr
)
return vps_result