Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn import SiLU | |
| import yaml | |
| # from gptdataloader import create_dataloader_v1 | |
| # from chapter5 import calc_loss_loader, calculate_loss_batch | |
| def _init_weights(module, std=0.041666666666666664): | |
| if isinstance(module, nn.Linear): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| class RotaryPositionalEmbedding(nn.Module): | |
| """ | |
| # https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L240 | |
| Rotary Positional Embedding (RoPE) for transformers Implemntation derived from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py | |
| """ | |
| def __init__(self, dim: int, theta: float = 10000.0): | |
| super().__init__() | |
| self.dim = dim | |
| self.theta = theta | |
| def forward(self, x: torch.Tensor, seq_len: int) -> torch.Tensor: | |
| """ | |
| Apply rotary positional embedding to the input tensor. | |
| Args: | |
| x (torch.Tensor): Input tensor of shape # B, T, H, D | |
| seq_len (int): Sequence length. #T | |
| Returns: | |
| torch.Tensor: Output tensor with rotary positional embeddings applied. | |
| """ | |
| B, T, H, H_D = x.shape | |
| # Generate position indices | |
| position = torch.arange(T, dtype=torch.float32, device=x.device).unsqueeze(-1) | |
| # Generate frequencies | |
| freqs = torch.exp( | |
| torch.arange(0, H_D, 2, dtype=torch.float32, device=x.device) * | |
| -(torch.log(torch.tensor(self.theta)) / H_D) | |
| ) | |
| # Compute sinusoids | |
| sinusoid = position * freqs | |
| sin = torch.sin(sinusoid) | |
| cos = torch.cos(sinusoid) | |
| # Reshape sin and cos to match the input tensor's shape | |
| sin = sin.unsqueeze(0).unsqueeze(2) # Shape: (1, T, 1, D // 2) | |
| cos = cos.unsqueeze(0).unsqueeze(2) # Shape: (1, T, 1, D // 2) | |
| # Apply rotary embeddings | |
| x_rotated = x.clone() | |
| x_rotated[..., 0::2] = x[..., 0::2] * cos - x[..., 1::2] * sin | |
| x_rotated[..., 1::2] = x[..., 1::2] * cos + x[..., 0::2] * sin | |
| return x_rotated | |
| class LlamaAttention(nn.Module): | |
| """ | |
| (self_attn): LlamaAttention( | |
| (q_proj): Linear(in_features=576, out_features=576, bias=False) | |
| (k_proj): Linear(in_features=576, out_features=192, bias=False) | |
| (v_proj): Linear(in_features=576, out_features=192, bias=False) | |
| (o_proj): Linear(in_features=576, out_features=576, bias=False) | |
| ) | |
| """ | |
| def __init__(self, config, rotary_emb): | |
| super().__init__() | |
| self.config = config | |
| self.num_attention_heads = self.config['num_attention_heads'] | |
| self.hidden_size = self.config['hidden_size'] | |
| # Ensure the hidden size is divisible by the number of attention heads | |
| if self.hidden_size % self.num_attention_heads != 0: | |
| raise ValueError( | |
| f"hidden_size ({self.hidden_size}) must be divisible by num_attention_heads ({self.num_attention_heads})" | |
| ) | |
| self.num_key_value_heads = self.config['num_key_value_heads'] | |
| self.head_dim = self.hidden_size // self.num_attention_heads | |
| self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) # D,D | |
| self.k_proj = nn.Linear(self.hidden_size, self.head_dim*self.num_key_value_heads, bias=False) # D,D/H | |
| self.v_proj = nn.Linear(self.hidden_size, self.head_dim*self.num_key_value_heads, bias=False) # D,D/H | |
| self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) # D,D | |
| # Convert the mask to boolean type when creating it | |
| # self.register_buffer("mask", | |
| # torch.triu(torch.ones(self.config['max_position_embeddings'], | |
| # self.config['max_position_embeddings']), | |
| # diagonal=1)) # Convert to boolean | |
| self.rotary_pos_emb = rotary_emb | |
| def forward(self, x): | |
| B, T, C = x.size() | |
| q = self.q_proj(x) # B,T,D | |
| k = self.k_proj(x) # B,T,D/H | |
| v = self.v_proj(x) # B,T,D/H | |
| q = q.view(B, T, self.num_attention_heads, self.head_dim) # B,T,H,D | |
| k = k.view(B, T, self.num_key_value_heads, self.head_dim) # B,T,H,D | |
| v = v.view(B, T, self.num_key_value_heads, self.head_dim) # B,T,H,D | |
| q = q.transpose(1,2) # B,H,T,D | |
| k = k.transpose(1,2) # B,num_key_value_heads,T,D | |
| v = v.transpose(1,2) # B,num_key_value_heads,T,D | |
| # apply rotary positional embedding | |
| q = self.rotary_pos_emb(q, T) | |
| k = self.rotary_pos_emb(k, T) | |
| # Repeat k/v heads if num_key_value_heads < num_attention_heads | |
| if self.num_key_value_heads != self.num_attention_heads: | |
| k = k.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) # B,kv_head,T,D -> B,H,T,D | |
| v = v.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) # B,kv_head,T,D -> B,H,T,D | |
| # Manual attention Stats | |
| # Q(B,H,T,D) @K.T(B,H,D,T) = Q.K_T (B,H,T,T) | |
| # attn_scores = q @ k.transpose(-2,-1) # B,H,T,T | |
| # mask_bool = self.mask[:T,:T].bool() # T,T | |
| # attn_scores.masked_fill_(mask_bool, -torch.inf) # B,H,T,T | |
| # attn_weights = F.softmax(attn_scores/k.size(-1)**0.5, dim=-1) # B,H,T,T | |
| # context_vector = attn_weights @ v # B,H,T,T * B,H,T,D = B,H,T,D | |
| # context_vector = context_vector.transpose(1,2) # B,T,H,D | |
| # context_vector = context_vector.contiguous().view(B,T,C) # B,T,H,D -> B,T,D | |
| # Manual attention Stats ENDS | |
| # Scaled dot-product attention STARTS | |
| attn_out = F.scaled_dot_product_attention(q, k, v, is_causal=True) | |
| context_vector = attn_out.transpose(1,2).reshape(B,T,C) | |
| # Scaled dot-product attention ENDS | |
| context_vector = self.o_proj(context_vector) | |
| return context_vector | |
| class LlamaMLP(nn.Module): | |
| """ | |
| (mlp): LlamaMLP( | |
| (gate_proj): Linear(in_features=576, out_features=1536, bias=False) | |
| (up_proj): Linear(in_features=576, out_features=1536, bias=False) | |
| (down_proj): Linear(in_features=1536, out_features=576, bias=False) | |
| (act_fn): SiLU() | |
| ) | |
| """ | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.gate_proj = nn.Linear(self.config['hidden_size'], self.config['intermediate_size'], bias=False) | |
| self.up_proj = nn.Linear(self.config['hidden_size'], self.config['intermediate_size'], bias=False) | |
| self.down_proj = nn.Linear(self.config['intermediate_size'], self.config['hidden_size'], bias=False) | |
| self.act_fn = SiLU() | |
| def forward(self, x): | |
| gate = self.gate_proj(x) | |
| up = self.up_proj(x) | |
| down = self.down_proj(self.act_fn(gate)*up) | |
| return down | |
| class LlamaRMSNorm(nn.Module): | |
| """ | |
| (norm): LlamaRMSNorm((576,), eps=1e-05) | |
| # RMSNorm Formula: | |
| # RMS(x) = sqrt((1 / d) * sum(x_i^2 for i in range(d))) | |
| # x_normalized = x / RMS(x) | |
| # output = gamma * x_normalized | |
| """ | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.eps = self.config['rms_norm_eps'] | |
| self.weight = nn.Parameter(torch.ones(self.config['hidden_size'])) | |
| def forward(self, x): | |
| rms = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + self.eps) | |
| return self.weight *rms * x | |
| class LlamaDecoderLayer(nn.Module): | |
| def __init__(self, config, rotary_emb): | |
| super().__init__() | |
| self.config = config | |
| self.self_attn = LlamaAttention(self.config, rotary_emb) | |
| self.mlp = LlamaMLP(self.config) | |
| self.input_layernorm = LlamaRMSNorm(self.config) | |
| self.post_attention_layernorm = LlamaRMSNorm(self.config) | |
| def forward(self, x): | |
| residual = x | |
| x = self.input_layernorm(x) | |
| x = self.self_attn(x) | |
| x = x + residual | |
| residual = x | |
| x = self.post_attention_layernorm(x) | |
| x = self.mlp(x) | |
| x = x + residual | |
| return x | |
| # # x = x + self.self_attn(self.input_layernorm(x)) | |
| # # x = x + self.mlp(self.post_attention_layernorm(x)) | |
| # return x | |
| class LlamaModel(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.init_method = config['init_method'] | |
| self.config = config['model_config'] | |
| self.embed_tokens = nn.Embedding(self.config['vocab_size'], self.config['hidden_size']) | |
| self.rotary_emb = RotaryPositionalEmbedding(self.config['hidden_size'], self.config['rope_theta']) | |
| self.layers = nn.ModuleList([LlamaDecoderLayer(self.config, self.rotary_emb) for _ in range(self.config['num_hidden_layers'])]) | |
| self.norm = LlamaRMSNorm(self.config) | |
| self.lm_head = nn.Linear(self.config['hidden_size'], self.config['vocab_size'], bias=False) | |
| if self.config['tie_word_embeddings']: | |
| self.lm_head.weight = self.embed_tokens.weight | |
| self.apply(lambda m: _init_weights(m, self.init_method['std'])) | |
| def forward(self, x, y=None): | |
| x = self.embed_tokens(x) | |
| for layer in self.layers: | |
| x = layer(x) | |
| x = self.norm(x) | |
| logits = self.lm_head(x) # B,T,V | |
| logits = logits.view(-1, logits.size(-1)) # Shape: [B*T, V] | |
| if y is not None: | |
| y = y.view(-1) # Shape: [B*T] | |
| loss = torch.nn.functional.cross_entropy(logits, y) | |
| return logits, loss | |
| else: | |
| return logits, None | |