Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| import torchvision.transforms as transforms | |
| from PIL import Image | |
| import os | |
| from pathlib import Path | |
| from gradio.flagging import SimpleCSVLogger | |
| from utils import GradioConfig | |
| import os | |
| import sys | |
| print("🧹 Cleaning caches to free disk space...") | |
| try: | |
| # Show current usage (optional) | |
| os.system("du -h --max-depth=1 /") | |
| # Delete caches & temp files | |
| os.system("rm -rf /root/.cache/huggingface") | |
| os.system("rm -rf /root/.cache/pip") | |
| os.system("rm -rf /tmp/*") | |
| sys.stdout.flush() | |
| except Exception as e: | |
| print(f"Error cleaning caches: {e}") | |
| print("✅ Cleanup done. Continuing startup...") | |
| class Resnet50Imagenet1kGradioApp: | |
| def __init__(self,cfg: GradioConfig): | |
| self.device = cfg.device # Change this to 'cuda' if you have a GPU available | |
| # Validate model path parameters | |
| # Convert to strings if needed and create path | |
| model_dir = str(cfg.model_dir) | |
| model_file = str(cfg.model_file_name) | |
| model_full_path = Path(model_dir) / model_file | |
| # Verify the file exists | |
| if not model_full_path.exists(): | |
| raise FileNotFoundError(f"Model file not found at: {model_full_path}") | |
| # load traced model | |
| self.model = torch.jit.load(model_full_path) | |
| self.model = self.model.to(self.device) | |
| self.model.eval() | |
| # Define the same transforms used during training/testing | |
| self.transforms = transforms.Compose([ | |
| transforms.Resize(256), | |
| transforms.CenterCrop(224), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
| ]) | |
| self.labels = cfg.labels | |
| def predict(self, image): | |
| if image is None: | |
| return None | |
| # Convert to PIL Image if needed | |
| if not isinstance(image, Image.Image): | |
| image = Image.fromarray(image).convert('RGB') | |
| # Preprocess image | |
| img_tensor = self.transforms(image).unsqueeze(0).to(self.device) | |
| # Get prediction | |
| output = self.model(img_tensor) | |
| probabilities = torch.nn.functional.softmax(output[0], dim=0) | |
| probs, indices = torch.topk(probabilities, k=5) | |
| print(f"Top 5 predictions:") | |
| for idx, prob in zip(indices, probs): | |
| print(f"idx: {idx}, label : {self.labels[idx]} , prob: {prob.item() * 100:.2f}%") # Format probability to 2 decimal places) | |
| return { | |
| self.labels[idx]: float(prob) | |
| for idx, prob in zip(indices, probs) | |
| } | |
| # Create classifier instance | |
| cfg = GradioConfig() | |
| classifier = Resnet50Imagenet1kGradioApp(cfg) | |
| # Create Gradio interface | |
| demo = gr.Interface( | |
| fn=classifier.predict, | |
| inputs=gr.Image(), | |
| outputs=gr.Label(num_top_classes=5), | |
| title="Resnet50 Imagenet 1k classifier", | |
| description="Upload an image to classify Images", | |
| flagging_mode="never", | |
| flagging_callback=SimpleCSVLogger(), | |
| examples=["examples/blue_lobster.jpeg", | |
| "examples/lobster.jpeg", | |
| "examples/lobster2.jpeg", | |
| "examples/turtle.jpeg"] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |