Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import platform | |
from helper import CoreMLPipeline | |
force_tf = os.environ.get('FORCE_TF', False) | |
auth_key = os.environ.get('HF_TOKEN', True) | |
config = { "coreml_extractor_repoid":"crossprism/efficientnetv2-21k-fv-m", | |
"coreml_extractor_path":"efficientnetV2M21kExtractor.mlmodel", | |
"tf_extractor_repoid":"crossprism/efficientnetv2-21k-fv-m-tf", | |
"tf_extractor_path":"efficientnetv2-21k-fv-m", | |
"coreml_classifier_repoid":"crossprism/travel_eu_landmarks", | |
"coreml_classifier_path":"LandmarksEUHead_quant8.mlpackage/Data/com.apple.CoreML/efficientnetV2M21kEULandmarksHead2_quant8.mlmodel", | |
"activation":"softmax" | |
} | |
use_tf = force_tf or (platform.system() != 'Darwin') | |
helper = CoreMLPipeline(config, auth_key, use_tf) | |
def classify_image(image): | |
resized = image.resize((480,480)) | |
return helper.classify(resized) | |
image = gr.Image(type='pil') | |
label = gr.Label(num_top_classes=3) | |
gr.Interface(fn=classify_image, inputs=image, outputs=label, examples = [["test1.jpg"],["test2.jpg"],["test3.jpg"]]).launch() | |