Eshieh2 commited on
Commit
f688c36
·
1 Parent(s): b14b44f

Add initial setup files

Browse files
Files changed (4) hide show
  1. .gitignore +2 -0
  2. app.py +37 -0
  3. requirements.txt +2 -0
  4. test.jpg +0 -0
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .DS_Store
2
+ *~
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import coremltools as ct
3
+ import numpy as np
4
+ import requests
5
+ import huggingface_hub as hf
6
+ from huggingface_hub import hf_hub_download
7
+ from huggingface_hub import login
8
+ import os
9
+ import PIL
10
+
11
+ #login()
12
+
13
+ read_key = os.environ.get('HF_TOKEN', True)
14
+ extractor_path = hf_hub_download(repo_id="crossprism/efficientnetv221k-M", filename="efficientnetV2M21kExtractor.mlmodel", use_auth_token = read_key)
15
+ classifier_path = hf_hub_download(repo_id="crossprism/tesla_sentry_dings", filename="tesla_sentry_door_ding.mlpackage/Data/com.apple.CoreML/tesla_door_dings.mlmodel", use_auth_token = read_key)
16
+
17
+
18
+ print(f"Loading extractor...{extractor_path}")
19
+ extractor = ct.models.MLModel(extractor_path)
20
+ print(f"Loading classifier...{classifier_path}")
21
+ classifier = ct.models.MLModel(classifier_path)
22
+
23
+ def classify_image(image):
24
+ image = image.resize((480,480))
25
+ features = extractor.predict({"image":image})
26
+ print(features)
27
+ features = features["Identity"]
28
+ isDing = classifier.predict({"features":features[0]})
29
+ print(isDing)
30
+ isDing = isDing["Identity"]
31
+ return {'ding': isDing["ding"]}
32
+
33
+ image = gr.Image(type='pil')
34
+ label = gr.Label(num_top_classes=3)
35
+
36
+ gr.Interface(fn=classify_image, inputs=image, outputs=label, examples = [["test.jpg"]]).launch()
37
+
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ python==3.9
2
+ coremltools=5.1
test.jpg ADDED