initial commit
Browse files- app.py +111 -0
- requirements.txt +6 -0
- text_transformation_tools.py +55 -0
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import text_transformation_tools as ttt
|
3 |
+
from transformers import pipeline
|
4 |
+
import plotly.express as px
|
5 |
+
|
6 |
+
|
7 |
+
def read_pdf(file):
|
8 |
+
text = ttt.pdf_to_text(uploaded_file)
|
9 |
+
|
10 |
+
return text
|
11 |
+
|
12 |
+
def analyze_text(paragraphs, topics, model, mode, min_chars, prob):
|
13 |
+
|
14 |
+
with st.spinner('Loading model'):
|
15 |
+
classifier = pipeline('zero-shot-classification', model=model)
|
16 |
+
|
17 |
+
relevant_parts = {}
|
18 |
+
|
19 |
+
for topic in topics:
|
20 |
+
relevant_parts[topic] = []
|
21 |
+
|
22 |
+
if mode == 'paragraphs':
|
23 |
+
text = paragraphs
|
24 |
+
elif mode == 'sentences':
|
25 |
+
text = []
|
26 |
+
for paragraph in paragraphs:
|
27 |
+
for sentence in paragraph.split('.'):
|
28 |
+
text.append(sentence)
|
29 |
+
|
30 |
+
min_chars = min_chars
|
31 |
+
min_score = prob
|
32 |
+
|
33 |
+
with st.spinner('Analyzing text...'):
|
34 |
+
counter = 0
|
35 |
+
counter_rel = 0
|
36 |
+
counter_tot = len(text)
|
37 |
+
|
38 |
+
with st.empty():
|
39 |
+
|
40 |
+
for sequence_to_classify in text:
|
41 |
+
|
42 |
+
cleansed_sequence = sequence_to_classify.replace('\n', '').replace(' ', ' ')
|
43 |
+
|
44 |
+
if len(cleansed_sequence) >= min_chars:
|
45 |
+
|
46 |
+
|
47 |
+
classified = classifier(cleansed_sequence, topics, multi_label=True)
|
48 |
+
|
49 |
+
for idx in range(len(classified['scores'])):
|
50 |
+
if classified['scores'][idx] >= min_score:
|
51 |
+
relevant_parts[classified['labels'][idx]].append(sequence_to_classify)
|
52 |
+
counter_rel += 1
|
53 |
+
|
54 |
+
counter += 1
|
55 |
+
|
56 |
+
st.write('Analyzed {} of {} {}. Found {} relevant {} so far.'.format(counter, counter_tot, mode, counter_rel, mode))
|
57 |
+
|
58 |
+
|
59 |
+
return relevant_parts
|
60 |
+
|
61 |
+
|
62 |
+
CHOICES = {
|
63 |
+
'facebook/bart-large-mnli': 'bart-large-mnli (very slow, english)',
|
64 |
+
'valhalla/distilbart-mnli-12-1': 'distilbart-mnli-12-1 (slow, english)',
|
65 |
+
'BaptisteDoyen/camembert-base-xnli': 'camembert-base-xnli (fast, english)',
|
66 |
+
'typeform/mobilebert-uncased-mnli': 'mobilebert-uncased-mnli (very fast, english)',
|
67 |
+
'Sahajtomar/German_Zeroshot': 'German_Zeroshot (slow, german)',
|
68 |
+
'MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7': 'mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 (fast, multilingual)'}
|
69 |
+
def format_func(option):
|
70 |
+
return CHOICES[option]
|
71 |
+
|
72 |
+
st.header('File and topics')
|
73 |
+
uploaded_file = st.file_uploader('Choose your .pdf file', type="pdf")
|
74 |
+
topics = st.text_input(label='Enter coma separated sustainability topics of interest.', value = 'human rights, sustainability')
|
75 |
+
|
76 |
+
|
77 |
+
st.header('Settings')
|
78 |
+
col1, col2 = st.columns(2)
|
79 |
+
|
80 |
+
with col1:
|
81 |
+
model = st.selectbox("Select model used to analyze pdf.", options=list(CHOICES.keys()), format_func=format_func, index=3)
|
82 |
+
mode = st.selectbox(label='Chose if you want to detect relevant paragraphs or sentences.', options=['paragraphs', 'sentences'])
|
83 |
+
with col2:
|
84 |
+
min_chars = st.number_input(label='Minimum number of characters to analyze in a text', min_value=0, max_value=500, value=20)
|
85 |
+
probability = st.number_input(label='Minimum probability of being relevant to accept (in percent)', min_value=0, max_value=100, value=90)/100
|
86 |
+
|
87 |
+
topics = topics.split(',')
|
88 |
+
topics = [topic.strip() for topic in topics]
|
89 |
+
|
90 |
+
st.header('Analyze PDF')
|
91 |
+
|
92 |
+
if st.button('Analyze PDF'):
|
93 |
+
with st.spinner('Reading PDF...'):
|
94 |
+
text = read_pdf(uploaded_file)
|
95 |
+
page_count = ttt.count_pages(uploaded_file)
|
96 |
+
language = ttt.detect_language(' '.join(text))[0]
|
97 |
+
st.subheader('Overview')
|
98 |
+
st.write('Our pdf reader detected {} pages and {} paragraphs. We assume that the language of this text is "{}".'.format(page_count, len(text), language))
|
99 |
+
|
100 |
+
st.subheader('Analysis')
|
101 |
+
relevant_parts = analyze_text(text, topics, model, mode, min_chars, probability)
|
102 |
+
|
103 |
+
counts = [len(relevant_parts[topic]) for topic in topics]
|
104 |
+
|
105 |
+
fig = px.bar(x=topics, y=counts, title='Found {}s of Relevance'.format(mode))
|
106 |
+
|
107 |
+
st.plotly_chart(fig)
|
108 |
+
|
109 |
+
st.subheader('Relevant Passages')
|
110 |
+
st.write(relevant_parts)
|
111 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers = {extras = ["torch"], version = "*"}
|
2 |
+
pdfminer-six = "*"
|
3 |
+
langid = "*"
|
4 |
+
pandas = "*"
|
5 |
+
streamlit = "*"
|
6 |
+
plotly = "*"
|
text_transformation_tools.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
This module contains helperfunctions to load pdfs, extract their texts and generate additional metadata
|
3 |
+
|
4 |
+
It was initially created for the businessresponsibility.ch project of the Prototype Fund. For more
|
5 |
+
information visit https://github.com/bizres
|
6 |
+
|
7 |
+
'''
|
8 |
+
from pdfminer.high_level import extract_pages
|
9 |
+
from pdfminer.layout import LTTextContainer
|
10 |
+
from pdfminer.high_level import extract_text
|
11 |
+
|
12 |
+
import fitz
|
13 |
+
|
14 |
+
import langid
|
15 |
+
langid.set_languages(['en', 'de','fr','it'])
|
16 |
+
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
def pdf_to_text(file):
|
20 |
+
'''
|
21 |
+
This function extracts text from a pdf.
|
22 |
+
|
23 |
+
Parameters:
|
24 |
+
path: path to pdf
|
25 |
+
'''
|
26 |
+
|
27 |
+
text = extract_text(file)
|
28 |
+
paragraphs = text.split('\n\n')
|
29 |
+
return paragraphs
|
30 |
+
|
31 |
+
|
32 |
+
def detect_language(text):
|
33 |
+
'''
|
34 |
+
This function detects the language of a text using langid
|
35 |
+
'''
|
36 |
+
return langid.classify(text)
|
37 |
+
|
38 |
+
def count_pages(pdf_file):
|
39 |
+
return len(list(extract_pages(pdf_file)))
|
40 |
+
|
41 |
+
def pdf_text_to_sections(text):
|
42 |
+
'''
|
43 |
+
This function generates a pandas DataFrame from the extracted text. Each section
|
44 |
+
is provided with the page it is on and a section_index
|
45 |
+
'''
|
46 |
+
sections = []
|
47 |
+
page_nr = 0
|
48 |
+
section_index = 0
|
49 |
+
for page in text.split('\n\n'):
|
50 |
+
page_nr += 1
|
51 |
+
for section in page.split('\n'):
|
52 |
+
sections.append([page_nr, section_index, section])
|
53 |
+
section_index += 1
|
54 |
+
|
55 |
+
return pd.DataFrame(sections, columns=['page', 'section_index', 'section_text'])
|