initial commit
Browse files- app.py +111 -0
- requirements.txt +62 -0
- text_transformation_tools.py +55 -0
app.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import text_transformation_tools as ttt
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
import plotly.express as px
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def read_pdf(file):
|
| 8 |
+
text = ttt.pdf_to_text(uploaded_file)
|
| 9 |
+
|
| 10 |
+
return text
|
| 11 |
+
|
| 12 |
+
def analyze_text(paragraphs, topics, model, mode, min_chars, prob):
|
| 13 |
+
|
| 14 |
+
with st.spinner('Loading model'):
|
| 15 |
+
classifier = pipeline('zero-shot-classification', model=model)
|
| 16 |
+
|
| 17 |
+
relevant_parts = {}
|
| 18 |
+
|
| 19 |
+
for topic in topics:
|
| 20 |
+
relevant_parts[topic] = []
|
| 21 |
+
|
| 22 |
+
if mode == 'paragraphs':
|
| 23 |
+
text = paragraphs
|
| 24 |
+
elif mode == 'sentences':
|
| 25 |
+
text = []
|
| 26 |
+
for paragraph in paragraphs:
|
| 27 |
+
for sentence in paragraph.split('.'):
|
| 28 |
+
text.append(sentence)
|
| 29 |
+
|
| 30 |
+
min_chars = min_chars
|
| 31 |
+
min_score = prob
|
| 32 |
+
|
| 33 |
+
with st.spinner('Analyzing text...'):
|
| 34 |
+
counter = 0
|
| 35 |
+
counter_rel = 0
|
| 36 |
+
counter_tot = len(text)
|
| 37 |
+
|
| 38 |
+
with st.empty():
|
| 39 |
+
|
| 40 |
+
for sequence_to_classify in text:
|
| 41 |
+
|
| 42 |
+
cleansed_sequence = sequence_to_classify.replace('\n', '').replace(' ', ' ')
|
| 43 |
+
|
| 44 |
+
if len(cleansed_sequence) >= min_chars:
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
classified = classifier(cleansed_sequence, topics, multi_label=True)
|
| 48 |
+
|
| 49 |
+
for idx in range(len(classified['scores'])):
|
| 50 |
+
if classified['scores'][idx] >= min_score:
|
| 51 |
+
relevant_parts[classified['labels'][idx]].append(sequence_to_classify)
|
| 52 |
+
counter_rel += 1
|
| 53 |
+
|
| 54 |
+
counter += 1
|
| 55 |
+
|
| 56 |
+
st.write('Analyzed {} of {} {}. Found {} relevant {} so far.'.format(counter, counter_tot, mode, counter_rel, mode))
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
return relevant_parts
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
CHOICES = {
|
| 63 |
+
'facebook/bart-large-mnli': 'bart-large-mnli (very slow, english)',
|
| 64 |
+
'valhalla/distilbart-mnli-12-1': 'distilbart-mnli-12-1 (slow, english)',
|
| 65 |
+
'BaptisteDoyen/camembert-base-xnli': 'camembert-base-xnli (fast, english)',
|
| 66 |
+
'typeform/mobilebert-uncased-mnli': 'mobilebert-uncased-mnli (very fast, english)',
|
| 67 |
+
'Sahajtomar/German_Zeroshot': 'German_Zeroshot (slow, german)',
|
| 68 |
+
'MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7': 'mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 (fast, multilingual)'}
|
| 69 |
+
def format_func(option):
|
| 70 |
+
return CHOICES[option]
|
| 71 |
+
|
| 72 |
+
st.header('File and topics')
|
| 73 |
+
uploaded_file = st.file_uploader('Choose your .pdf file', type="pdf")
|
| 74 |
+
topics = st.text_input(label='Enter coma separated sustainability topics of interest.', value = 'human rights, sustainability')
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
st.header('Settings')
|
| 78 |
+
col1, col2 = st.columns(2)
|
| 79 |
+
|
| 80 |
+
with col1:
|
| 81 |
+
model = st.selectbox("Select model used to analyze pdf.", options=list(CHOICES.keys()), format_func=format_func, index=3)
|
| 82 |
+
mode = st.selectbox(label='Chose if you want to detect relevant paragraphs or sentences.', options=['paragraphs', 'sentences'])
|
| 83 |
+
with col2:
|
| 84 |
+
min_chars = st.number_input(label='Minimum number of characters to analyze in a text', min_value=0, max_value=500, value=20)
|
| 85 |
+
probability = st.number_input(label='Minimum probability of being relevant to accept (in percent)', min_value=0, max_value=100, value=90)/100
|
| 86 |
+
|
| 87 |
+
topics = topics.split(',')
|
| 88 |
+
topics = [topic.strip() for topic in topics]
|
| 89 |
+
|
| 90 |
+
st.header('Analyze PDF')
|
| 91 |
+
|
| 92 |
+
if st.button('Analyze PDF'):
|
| 93 |
+
with st.spinner('Reading PDF...'):
|
| 94 |
+
text = read_pdf(uploaded_file)
|
| 95 |
+
page_count = ttt.count_pages(uploaded_file)
|
| 96 |
+
language = ttt.detect_language(' '.join(text))[0]
|
| 97 |
+
st.subheader('Overview')
|
| 98 |
+
st.write('Our pdf reader detected {} pages and {} paragraphs. We assume that the language of this text is "{}".'.format(page_count, len(text), language))
|
| 99 |
+
|
| 100 |
+
st.subheader('Analysis')
|
| 101 |
+
relevant_parts = analyze_text(text, topics, model, mode, min_chars, probability)
|
| 102 |
+
|
| 103 |
+
counts = [len(relevant_parts[topic]) for topic in topics]
|
| 104 |
+
|
| 105 |
+
fig = px.bar(x=topics, y=counts, title='Found {}s of Relevance'.format(mode))
|
| 106 |
+
|
| 107 |
+
st.plotly_chart(fig)
|
| 108 |
+
|
| 109 |
+
st.subheader('Relevant Passages')
|
| 110 |
+
st.write(relevant_parts)
|
| 111 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
altair==4.2.0
|
| 2 |
+
attrs==22.1.0
|
| 3 |
+
blinker==1.5
|
| 4 |
+
cachetools==5.2.0
|
| 5 |
+
certifi==2022.9.14
|
| 6 |
+
cffi==1.15.1
|
| 7 |
+
charset-normalizer==2.1.1
|
| 8 |
+
click==8.1.3
|
| 9 |
+
commonmark==0.9.1
|
| 10 |
+
cryptography==38.0.1
|
| 11 |
+
decorator==5.1.1
|
| 12 |
+
entrypoints==0.4
|
| 13 |
+
filelock==3.8.0
|
| 14 |
+
gitdb==4.0.9
|
| 15 |
+
GitPython==3.1.27
|
| 16 |
+
huggingface-hub==0.9.1
|
| 17 |
+
idna==3.4
|
| 18 |
+
importlib-metadata==4.12.0
|
| 19 |
+
Jinja2==3.1.2
|
| 20 |
+
jsonschema==4.16.0
|
| 21 |
+
langid==1.1.6
|
| 22 |
+
MarkupSafe==2.1.1
|
| 23 |
+
numpy==1.23.3
|
| 24 |
+
packaging==21.3
|
| 25 |
+
pandas==1.5.0
|
| 26 |
+
pdfminer.six==20220524
|
| 27 |
+
Pillow==9.2.0
|
| 28 |
+
plotly==5.10.0
|
| 29 |
+
protobuf==3.20.1
|
| 30 |
+
pyarrow==9.0.0
|
| 31 |
+
pycparser==2.21
|
| 32 |
+
pydeck==0.8.0b3
|
| 33 |
+
Pygments==2.13.0
|
| 34 |
+
Pympler==1.0.1
|
| 35 |
+
PyMuPDF==1.20.2
|
| 36 |
+
pyparsing==3.0.9
|
| 37 |
+
pyrsistent==0.18.1
|
| 38 |
+
python-dateutil==2.8.2
|
| 39 |
+
pytz==2022.2.1
|
| 40 |
+
pytz-deprecation-shim==0.1.0.post0
|
| 41 |
+
PyYAML==6.0
|
| 42 |
+
regex==2022.9.13
|
| 43 |
+
requests==2.28.1
|
| 44 |
+
rich==12.5.1
|
| 45 |
+
semver==2.13.0
|
| 46 |
+
six==1.16.0
|
| 47 |
+
smmap==5.0.0
|
| 48 |
+
streamlit==1.13.0
|
| 49 |
+
tenacity==8.1.0
|
| 50 |
+
tokenizers==0.12.1
|
| 51 |
+
toml==0.10.2
|
| 52 |
+
toolz==0.12.0
|
| 53 |
+
torch==1.12.1
|
| 54 |
+
tornado==6.2
|
| 55 |
+
tqdm==4.64.1
|
| 56 |
+
transformers==4.22.1
|
| 57 |
+
typing_extensions==4.3.0
|
| 58 |
+
tzlocal==4.2
|
| 59 |
+
urllib3==1.26.12
|
| 60 |
+
validators==0.20.0
|
| 61 |
+
watchdog==2.1.9
|
| 62 |
+
zipp==3.8.1
|
text_transformation_tools.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
This module contains helperfunctions to load pdfs, extract their texts and generate additional metadata
|
| 3 |
+
|
| 4 |
+
It was initially created for the businessresponsibility.ch project of the Prototype Fund. For more
|
| 5 |
+
information visit https://github.com/bizres
|
| 6 |
+
|
| 7 |
+
'''
|
| 8 |
+
from pdfminer.high_level import extract_pages
|
| 9 |
+
from pdfminer.layout import LTTextContainer
|
| 10 |
+
from pdfminer.high_level import extract_text
|
| 11 |
+
|
| 12 |
+
import fitz
|
| 13 |
+
|
| 14 |
+
import langid
|
| 15 |
+
langid.set_languages(['en', 'de','fr','it'])
|
| 16 |
+
|
| 17 |
+
import pandas as pd
|
| 18 |
+
|
| 19 |
+
def pdf_to_text(file):
|
| 20 |
+
'''
|
| 21 |
+
This function extracts text from a pdf.
|
| 22 |
+
|
| 23 |
+
Parameters:
|
| 24 |
+
path: path to pdf
|
| 25 |
+
'''
|
| 26 |
+
|
| 27 |
+
text = extract_text(file)
|
| 28 |
+
paragraphs = text.split('\n\n')
|
| 29 |
+
return paragraphs
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def detect_language(text):
|
| 33 |
+
'''
|
| 34 |
+
This function detects the language of a text using langid
|
| 35 |
+
'''
|
| 36 |
+
return langid.classify(text)
|
| 37 |
+
|
| 38 |
+
def count_pages(pdf_file):
|
| 39 |
+
return len(list(extract_pages(pdf_file)))
|
| 40 |
+
|
| 41 |
+
def pdf_text_to_sections(text):
|
| 42 |
+
'''
|
| 43 |
+
This function generates a pandas DataFrame from the extracted text. Each section
|
| 44 |
+
is provided with the page it is on and a section_index
|
| 45 |
+
'''
|
| 46 |
+
sections = []
|
| 47 |
+
page_nr = 0
|
| 48 |
+
section_index = 0
|
| 49 |
+
for page in text.split('\n\n'):
|
| 50 |
+
page_nr += 1
|
| 51 |
+
for section in page.split('\n'):
|
| 52 |
+
sections.append([page_nr, section_index, section])
|
| 53 |
+
section_index += 1
|
| 54 |
+
|
| 55 |
+
return pd.DataFrame(sections, columns=['page', 'section_index', 'section_text'])
|