Spaces:
Running
Running
initial commit
Browse files- app.py +161 -0
- requirements.txt +34 -0
- saved_models/config.yaml +131 -0
- saved_models/hihats/hihats_v2.ckpt +3 -0
- saved_models/kicks/kicks_v7.ckpt +3 -0
- saved_models/percussion/percussion_v0.ckpt +3 -0
- saved_models/snares/snares_v0.ckpt +3 -0
app.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Imports
|
2 |
+
import gradio as gr
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import torch
|
5 |
+
import torchaudio
|
6 |
+
from torch import nn
|
7 |
+
import pytorch_lightning as pl
|
8 |
+
from ema_pytorch import EMA
|
9 |
+
import yaml
|
10 |
+
from audio_diffusion_pytorch import DiffusionModel, UNetV0, VDiffusion, VSampler
|
11 |
+
|
12 |
+
|
13 |
+
# Load configs
|
14 |
+
def load_configs(config_path):
|
15 |
+
with open(config_path, 'r') as file:
|
16 |
+
config = yaml.safe_load(file)
|
17 |
+
pl_configs = config['model']
|
18 |
+
model_configs = config['model']['model']
|
19 |
+
return pl_configs, model_configs
|
20 |
+
|
21 |
+
# plot mel spectrogram
|
22 |
+
def plot_mel_spectrogram(sample, sr):
|
23 |
+
transform = torchaudio.transforms.MelSpectrogram(
|
24 |
+
sample_rate=sr,
|
25 |
+
n_fft=1024,
|
26 |
+
hop_length=512,
|
27 |
+
n_mels=80,
|
28 |
+
center=True,
|
29 |
+
norm="slaney",
|
30 |
+
)
|
31 |
+
|
32 |
+
spectrogram = transform(torch.mean(sample, dim=0)) # downmix and cal spectrogram
|
33 |
+
spectrogram = torchaudio.functional.amplitude_to_DB(spectrogram, 1.0, 1e-10, 80.0)
|
34 |
+
|
35 |
+
# Plot the Mel spectrogram
|
36 |
+
fig = plt.figure(figsize=(7, 4))
|
37 |
+
plt.imshow(spectrogram, aspect='auto', origin='lower')
|
38 |
+
plt.colorbar(format='%+2.0f dB')
|
39 |
+
plt.xlabel('Frame')
|
40 |
+
plt.ylabel('Mel Bin')
|
41 |
+
plt.title('Mel Spectrogram')
|
42 |
+
plt.tight_layout()
|
43 |
+
|
44 |
+
return fig
|
45 |
+
|
46 |
+
# Define PyTorch Lightning model
|
47 |
+
class Model(pl.LightningModule):
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
lr: float,
|
51 |
+
lr_beta1: float,
|
52 |
+
lr_beta2: float,
|
53 |
+
lr_eps: float,
|
54 |
+
lr_weight_decay: float,
|
55 |
+
ema_beta: float,
|
56 |
+
ema_power: float,
|
57 |
+
model: nn.Module,
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
self.lr = lr
|
61 |
+
self.lr_beta1 = lr_beta1
|
62 |
+
self.lr_beta2 = lr_beta2
|
63 |
+
self.lr_eps = lr_eps
|
64 |
+
self.lr_weight_decay = lr_weight_decay
|
65 |
+
self.model = model
|
66 |
+
self.model_ema = EMA(self.model, beta=ema_beta, power=ema_power)
|
67 |
+
|
68 |
+
# Instantiate model (must match model that was trained)
|
69 |
+
def load_model(model_configs, pl_configs) -> nn.Module:
|
70 |
+
# Diffusion model
|
71 |
+
model = DiffusionModel(
|
72 |
+
net_t=UNetV0, # The model type used for diffusion (U-Net V0 in this case)
|
73 |
+
in_channels=model_configs['in_channels'], # U-Net: number of input/output (audio) channels
|
74 |
+
channels=model_configs['channels'], # U-Net: channels at each layer
|
75 |
+
factors=model_configs['factors'], # U-Net: downsampling and upsampling factors at each layer
|
76 |
+
items=model_configs['items'], # U-Net: number of repeating items at each layer
|
77 |
+
attentions=model_configs['attentions'], # U-Net: attention enabled/disabled at each layer
|
78 |
+
attention_heads=model_configs['attention_heads'], # U-Net: number of attention heads per attention item
|
79 |
+
attention_features=model_configs['attention_features'], # U-Net: number of attention features per attention item
|
80 |
+
diffusion_t=VDiffusion, # The diffusion method used
|
81 |
+
sampler_t=VSampler # The diffusion sampler used
|
82 |
+
)
|
83 |
+
|
84 |
+
# pl model
|
85 |
+
model = Model(
|
86 |
+
lr=pl_configs['lr'],
|
87 |
+
lr_beta1=pl_configs['lr_beta1'],
|
88 |
+
lr_beta2=pl_configs['lr_beta2'],
|
89 |
+
lr_eps=pl_configs['lr_eps'],
|
90 |
+
lr_weight_decay=pl_configs['lr_weight_decay'],
|
91 |
+
ema_beta=pl_configs['ema_beta'],
|
92 |
+
ema_power=pl_configs['ema_power'],
|
93 |
+
model=model
|
94 |
+
)
|
95 |
+
|
96 |
+
return model
|
97 |
+
|
98 |
+
# Assign to GPU
|
99 |
+
def assign_to_gpu(model):
|
100 |
+
if torch.cuda.is_available():
|
101 |
+
model = model.to('cuda')
|
102 |
+
print(f"Device: {model.device}")
|
103 |
+
return model
|
104 |
+
|
105 |
+
# Load model checkpoint
|
106 |
+
def load_checkpoint(model, ckpt_path) -> None:
|
107 |
+
checkpoint = torch.load(ckpt_path, map_location='cpu')['state_dict']
|
108 |
+
model.load_state_dict(checkpoint) # should output "<All keys matched successfully>"
|
109 |
+
|
110 |
+
|
111 |
+
# Generate Samples
|
112 |
+
def generate_samples(model_name, num_samples, num_steps, duration=32768):
|
113 |
+
# load_checkpoint
|
114 |
+
ckpt_path = models[model_name]
|
115 |
+
load_checkpoint(model, ckpt_path)
|
116 |
+
|
117 |
+
with torch.no_grad():
|
118 |
+
all_samples = torch.zeros(2, 0) # initialize all samples
|
119 |
+
for i in range(num_samples):
|
120 |
+
noise = torch.randn((1, 2, int(duration)), device=model.device) # [batch_size, in_channels, length]
|
121 |
+
generated_sample = model.model_ema.ema_model.sample(noise, num_steps=num_steps).squeeze(0).cpu() # Suggested num_steps 10-100
|
122 |
+
|
123 |
+
# concatenate all samples:
|
124 |
+
all_samples = torch.concat((all_samples, generated_sample), dim=1)
|
125 |
+
|
126 |
+
torch.cuda.empty_cache()
|
127 |
+
|
128 |
+
fig = plot_mel_spectrogram(all_samples, sr)
|
129 |
+
plt.title(f"{model_name} Mel Spectrogram")
|
130 |
+
|
131 |
+
return (sr, all_samples.cpu().detach().numpy().T), fig # (sample rate, audio), plot
|
132 |
+
|
133 |
+
# load model & configs
|
134 |
+
sr = 44100 # sampling rate
|
135 |
+
config_path = "saved_models/config.yaml" # config path
|
136 |
+
pl_configs, model_configs = load_configs(config_path)
|
137 |
+
model = load_model(model_configs, pl_configs)
|
138 |
+
model = assign_to_gpu(model)
|
139 |
+
|
140 |
+
models = {
|
141 |
+
"Kicks": "saved_models/kicks/kicks_v7.ckpt",
|
142 |
+
"Snares": "saved_models/snares/snares_v0.ckpt",
|
143 |
+
"Hi-hats": "saved_models/hihats/hihats_v2.ckpt",
|
144 |
+
"Percussion": "saved_models/percussion/percussion_v0.ckpt"
|
145 |
+
}
|
146 |
+
|
147 |
+
demo = gr.Interface(
|
148 |
+
generate_samples,
|
149 |
+
inputs=[
|
150 |
+
gr.Dropdown(choices=list(models.keys()), value=list(models.keys())[0], label="Model"),
|
151 |
+
gr.Slider(1, 25, step=1, label="Number of Samples to Generate", value=1),
|
152 |
+
gr.Slider(1, 100, step=1, label="Number of Diffusion Steps", value=10)
|
153 |
+
],
|
154 |
+
outputs=[
|
155 |
+
gr.Audio(label="Generated Audio Sample"),
|
156 |
+
gr.Plot(label="Generated Audio Spectrogram")
|
157 |
+
]
|
158 |
+
)
|
159 |
+
|
160 |
+
if __name__ == "__main__":
|
161 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.0
|
2 |
+
torchaudio>=2.0
|
3 |
+
pytorch-lightning==1.7.7
|
4 |
+
python-dotenv
|
5 |
+
hydra-core
|
6 |
+
hydra-colorlog
|
7 |
+
wandb
|
8 |
+
auraloss
|
9 |
+
yt-dlp
|
10 |
+
datasets
|
11 |
+
pyloudnorm
|
12 |
+
einops
|
13 |
+
omegaconf
|
14 |
+
rich
|
15 |
+
plotly
|
16 |
+
librosa
|
17 |
+
transformers
|
18 |
+
eng-to-ipa
|
19 |
+
ema-pytorch
|
20 |
+
py7zr
|
21 |
+
notebook
|
22 |
+
matplotlib
|
23 |
+
ipykernel
|
24 |
+
gradio
|
25 |
+
|
26 |
+
# k-diffusion
|
27 |
+
# v-diffusion-pytorch
|
28 |
+
|
29 |
+
audio-diffusion-pytorch==0.1.3
|
30 |
+
audio-encoders-pytorch
|
31 |
+
audio-data-pytorch
|
32 |
+
quantizer-pytorch
|
33 |
+
difformer-pytorch
|
34 |
+
a-transformers-pytorch
|
saved_models/config.yaml
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
seed: 12345
|
2 |
+
train: true
|
3 |
+
ignore_warnings: true
|
4 |
+
print_config: false
|
5 |
+
work_dir: ${hydra:runtime.cwd}
|
6 |
+
logs_dir: ${work_dir}${oc.env:DIR_LOGS}
|
7 |
+
data_dir: ${work_dir}${oc.env:DIR_DATA}
|
8 |
+
ckpt_dir: ${logs_dir}/ckpts/${now:%Y-%m-%d-%H-%M-%S}
|
9 |
+
module: main.module_base
|
10 |
+
batch_size: 1
|
11 |
+
accumulate_grad_batches: 32
|
12 |
+
num_workers: 8
|
13 |
+
sampling_rate: 44100
|
14 |
+
length: 32768
|
15 |
+
channels: 2
|
16 |
+
log_every_n_steps: 1000
|
17 |
+
model:
|
18 |
+
_target_: ${module}.Model
|
19 |
+
lr: 0.0001
|
20 |
+
lr_beta1: 0.95
|
21 |
+
lr_beta2: 0.999
|
22 |
+
lr_eps: 1.0e-06
|
23 |
+
lr_weight_decay: 0.001
|
24 |
+
ema_beta: 0.995
|
25 |
+
ema_power: 0.7
|
26 |
+
model:
|
27 |
+
_target_: main.DiffusionModel
|
28 |
+
net_t:
|
29 |
+
_target_: ${module}.UNetT
|
30 |
+
in_channels: 2
|
31 |
+
channels:
|
32 |
+
- 32
|
33 |
+
- 32
|
34 |
+
- 64
|
35 |
+
- 64
|
36 |
+
- 128
|
37 |
+
- 128
|
38 |
+
- 256
|
39 |
+
- 256
|
40 |
+
factors:
|
41 |
+
- 1
|
42 |
+
- 2
|
43 |
+
- 2
|
44 |
+
- 2
|
45 |
+
- 2
|
46 |
+
- 2
|
47 |
+
- 2
|
48 |
+
- 2
|
49 |
+
items:
|
50 |
+
- 2
|
51 |
+
- 2
|
52 |
+
- 2
|
53 |
+
- 2
|
54 |
+
- 2
|
55 |
+
- 2
|
56 |
+
- 4
|
57 |
+
- 4
|
58 |
+
attentions:
|
59 |
+
- 0
|
60 |
+
- 0
|
61 |
+
- 0
|
62 |
+
- 0
|
63 |
+
- 0
|
64 |
+
- 1
|
65 |
+
- 1
|
66 |
+
- 1
|
67 |
+
attention_heads: 8
|
68 |
+
attention_features: 64
|
69 |
+
datamodule:
|
70 |
+
_target_: main.module_base.Datamodule
|
71 |
+
dataset:
|
72 |
+
_target_: audio_data_pytorch.WAVDataset
|
73 |
+
path: ./data/wav_dataset/kicks
|
74 |
+
recursive: true
|
75 |
+
sample_rate: ${sampling_rate}
|
76 |
+
transforms:
|
77 |
+
_target_: audio_data_pytorch.AllTransform
|
78 |
+
crop_size: ${length}
|
79 |
+
stereo: true
|
80 |
+
source_rate: ${sampling_rate}
|
81 |
+
target_rate: ${sampling_rate}
|
82 |
+
loudness: -20
|
83 |
+
val_split: 0.05
|
84 |
+
batch_size: ${batch_size}
|
85 |
+
num_workers: ${num_workers}
|
86 |
+
pin_memory: true
|
87 |
+
callbacks:
|
88 |
+
rich_progress_bar:
|
89 |
+
_target_: pytorch_lightning.callbacks.RichProgressBar
|
90 |
+
model_checkpoint:
|
91 |
+
_target_: pytorch_lightning.callbacks.ModelCheckpoint
|
92 |
+
monitor: valid_loss
|
93 |
+
save_top_k: 1
|
94 |
+
save_last: true
|
95 |
+
mode: min
|
96 |
+
verbose: false
|
97 |
+
dirpath: ${logs_dir}/ckpts/${now:%Y-%m-%d-%H-%M-%S}
|
98 |
+
filename: '{epoch:02d}-{valid_loss:.3f}'
|
99 |
+
model_summary:
|
100 |
+
_target_: pytorch_lightning.callbacks.RichModelSummary
|
101 |
+
max_depth: 2
|
102 |
+
audio_samples_logger:
|
103 |
+
_target_: main.module_base.SampleLogger
|
104 |
+
num_items: 4
|
105 |
+
channels: ${channels}
|
106 |
+
sampling_rate: ${sampling_rate}
|
107 |
+
length: ${length}
|
108 |
+
sampling_steps:
|
109 |
+
- 50
|
110 |
+
use_ema_model: true
|
111 |
+
loggers:
|
112 |
+
wandb:
|
113 |
+
_target_: pytorch_lightning.loggers.wandb.WandbLogger
|
114 |
+
project: ${oc.env:WANDB_PROJECT}
|
115 |
+
entity: ${oc.env:WANDB_ENTITY}
|
116 |
+
name: kicks_v7
|
117 |
+
job_type: train
|
118 |
+
group: ''
|
119 |
+
save_dir: ${logs_dir}
|
120 |
+
trainer:
|
121 |
+
_target_: pytorch_lightning.Trainer
|
122 |
+
gpus: 1
|
123 |
+
precision: 16
|
124 |
+
accelerator: gpu
|
125 |
+
min_epochs: 0
|
126 |
+
max_epochs: -1
|
127 |
+
enable_model_summary: false
|
128 |
+
log_every_n_steps: 1
|
129 |
+
check_val_every_n_epoch: null
|
130 |
+
val_check_interval: ${log_every_n_steps}
|
131 |
+
accumulate_grad_batches: ${accumulate_grad_batches}
|
saved_models/hihats/hihats_v2.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc7245d3d5617bb3a76dcc8534d9cee25030c3986fa80502f19ec3506a68d05c
|
3 |
+
size 509086593
|
saved_models/kicks/kicks_v7.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f3511269e10edc889cfd50393fd5228cdfb069185afc9d92263cef548a18482
|
3 |
+
size 509086593
|
saved_models/percussion/percussion_v0.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8fe5dc0295738995cb74892a7d70a074abdfd2c7e887951a2bc9814ec9acfaf
|
3 |
+
size 509086593
|
saved_models/snares/snares_v0.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2f906655666200635267c3a92ff87631f4bb4ef94bf087cfee3e2611da9b30b
|
3 |
+
size 509086593
|