ivnban27-ctl commited on
Commit
5fc0bcd
·
1 Parent(s): bdb8652

fixint TA page reloading after some time, deleting unnecessary time sleep

Browse files
Files changed (1) hide show
  1. pages/training_adherence.py +5 -10
pages/training_adherence.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import streamlit as st
2
  import numpy as np
3
  from collections import defaultdict
@@ -8,8 +9,9 @@ from models.ta_models.config import QUESTION2PHASE, NAME2QUESTION, TA_OPTIONS
8
 
9
  st.set_page_config(page_title="Conversation Simulator - Scoring")
10
 
11
- if not are_models_alive():
12
- st.switch_page("pages/model_loader.py")
 
13
 
14
  if "memory" not in st.session_state:
15
  st.switch_page("pages/convosim.py")
@@ -22,19 +24,12 @@ def get_ta_responses():
22
  my_bar = st.progress(0, text=progress_text)
23
  data = defaultdict(defaultdict)
24
  for i, question in enumerate(QUESTION2PHASE.keys()):
25
- # responses = ["Yes, The helper showed some respect.",
26
- # "Yes. The helper is good! No doubt",
27
- # "N/A, Texter disengaged.",
28
- # "No. While texter is trying is lacking.",
29
- # "No \n\n This is an explanation."]
30
- # full_response = np.random.choice(responses)
31
  full_convo, prompt, full_response = TA_predict_convo(memory, question, make_explanation=True, conversation_id=st.session_state['convo_id'])
32
  response, explanation = post_process_response(full_response)
33
  data[question]["response"] = response
34
  data[question]["explanation"] = explanation
35
  my_bar.progress((i+1) / len(QUESTION2PHASE.keys()), text = progress_text)
36
- import time
37
- time.sleep(2)
38
  my_bar.empty()
39
  return data
40
 
 
1
+ import time
2
  import streamlit as st
3
  import numpy as np
4
  from collections import defaultdict
 
9
 
10
  st.set_page_config(page_title="Conversation Simulator - Scoring")
11
 
12
+ if time.time() - st.session_state['last_message_ts'] > 2400: # > 40 min
13
+ if not are_models_alive():
14
+ st.switch_page("pages/model_loader.py")
15
 
16
  if "memory" not in st.session_state:
17
  st.switch_page("pages/convosim.py")
 
24
  my_bar = st.progress(0, text=progress_text)
25
  data = defaultdict(defaultdict)
26
  for i, question in enumerate(QUESTION2PHASE.keys()):
 
 
 
 
 
 
27
  full_convo, prompt, full_response = TA_predict_convo(memory, question, make_explanation=True, conversation_id=st.session_state['convo_id'])
28
  response, explanation = post_process_response(full_response)
29
  data[question]["response"] = response
30
  data[question]["explanation"] = explanation
31
  my_bar.progress((i+1) / len(QUESTION2PHASE.keys()), text = progress_text)
32
+ # time.sleep(2)
 
33
  my_bar.empty()
34
  return data
35