crimeacs's picture
Fixed button bug and added contacts
d5f505f
import numpy as np
from scipy.interpolate import griddata
def bin_distances(distances, bin_size=10):
# Bin the distances into groups of `bin_size` kilometers
binned_distances = {}
for i, distance in enumerate(distances):
bin_index = distance // bin_size
if bin_index not in binned_distances:
binned_distances[bin_index] = (distance, i)
elif i < binned_distances[bin_index][1]:
binned_distances[bin_index] = (distance, i)
# Select the first distance in each bin and its index
first_distances = []
for bin_index in binned_distances:
first_distance, first_distance_index = binned_distances[bin_index]
first_distances.append(first_distance_index)
return first_distances
def interpolate_vel_model(
velocity_model,
initial_velocity,
lat_values,
lon_values,
depth_values,
n_lat,
n_lon,
n_depth,
):
# Create a mask for points with the initial velocity
initial_velocity_mask = velocity_model == initial_velocity
# Find the indices of points with non-initial velocities
non_initial_velocity_indices = np.argwhere(~initial_velocity_mask)
# Extract the coordinates and corresponding velocities of the known points
known_points = np.column_stack(
[
lat_values[non_initial_velocity_indices[:, 0]],
lon_values[non_initial_velocity_indices[:, 1]],
depth_values[non_initial_velocity_indices[:, 2]],
]
)
# Find the maximum depth in the known_points
max_known_depth = np.max(known_points[:, 2])
known_velocities = velocity_model[~initial_velocity_mask]
# Create a grid of points for the entire volume
grid_points = (
np.array(np.meshgrid(lat_values, lon_values, depth_values, indexing="ij"))
.reshape(3, -1)
.T
)
# Create a mask for grid points that are deeper than the maximum known depth
depth_mask = grid_points[:, 2] <= max_known_depth
# Interpolate the velocities at the grid points
interpolated_velocities = griddata(
known_points, known_velocities, grid_points[depth_mask], method="linear"
)
# Fill nan values with the nearest known velocities
interpolated_velocities_filled = griddata(
known_points, known_velocities, grid_points[depth_mask], method="nearest"
)
interpolated_velocities[
np.isnan(interpolated_velocities)
] = interpolated_velocities_filled[np.isnan(interpolated_velocities)]
# Initialize an array with the same length as grid_points and fill it with nan values
interpolated_velocities_with_depth_limit = np.full(grid_points.shape[0], np.nan)
# Update the array with the interpolated velocities for the masked grid points
interpolated_velocities_with_depth_limit[depth_mask] = interpolated_velocities
# Reshape the interpolated velocities to match the shape of the velocity_model
interpolated_velocity_model = interpolated_velocities_with_depth_limit.reshape(
n_lat, n_lon, n_depth
)
return interpolated_velocity_model
# Function to find the closest index for a given value in an array
def find_closest_index(array, value):
return np.argmin(np.abs(array - value))