Spaces:
No application file
No application file
| from typing import Dict, List, Union | |
| import datasets as ds | |
| import evaluate | |
| import numpy as np | |
| import numpy.typing as npt | |
| _DESCRIPTION = r"""\ | |
| Computes the non-flatness of regions that text elements are solely put on, referring to CGL-GAN. | |
| Computes the ratio of valid underlay elements to total underlay elements used in PosterLayout. Intuitively, underlay should be placed under other non-underlay elements. | |
| - strict: scoring the underlay as: | |
| - 1: there is a non-underlay element completely inside | |
| - 0: otherwise | |
| - loose: Calcurate (ai/a2). | |
| """ | |
| _KWARGS_DESCRIPTION = """\ | |
| FIXME | |
| """ | |
| _CITATION = """\ | |
| @inproceedings{hsu2023posterlayout, | |
| title={Posterlayout: A new benchmark and approach for content-aware visual-textual presentation layout}, | |
| author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing}, | |
| booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, | |
| pages={6018--6026}, | |
| year={2023} | |
| } | |
| """ | |
| class LayoutUnderlayEffectiveness(evaluate.Metric): | |
| def __init__( | |
| self, | |
| canvas_width: int, | |
| canvas_height: int, | |
| text_label_index: int = 1, | |
| decoration_label_index: int = 3, | |
| **kwargs, | |
| ) -> None: | |
| super().__init__(**kwargs) | |
| self.canvas_width = canvas_width | |
| self.canvas_height = canvas_height | |
| self.text_label_index = text_label_index | |
| self.decoration_label_index = decoration_label_index | |
| def _info(self) -> evaluate.EvaluationModuleInfo: | |
| return evaluate.MetricInfo( | |
| description=_DESCRIPTION, | |
| citation=_CITATION, | |
| inputs_description=_KWARGS_DESCRIPTION, | |
| features=ds.Features( | |
| { | |
| "predictions": ds.Sequence(ds.Sequence(ds.Value("float64"))), | |
| "gold_labels": ds.Sequence(ds.Sequence(ds.Value("int64"))), | |
| } | |
| ), | |
| codebase_urls=[ | |
| "https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L224-L252", | |
| "https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L265-L292", | |
| ], | |
| ) | |
| def get_rid_of_invalid( | |
| self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64] | |
| ) -> npt.NDArray[np.int64]: | |
| assert len(predictions) == len(gold_labels) | |
| w = self.canvas_width / 100 | |
| h = self.canvas_height / 100 | |
| for i, prediction in enumerate(predictions): | |
| for j, b in enumerate(prediction): | |
| xl, yl, xr, yr = b | |
| xl = max(0, xl) | |
| yl = max(0, yl) | |
| xr = min(self.canvas_width, xr) | |
| yr = min(self.canvas_height, yr) | |
| if abs((xr - xl) * (yr - yl)) < w * h * 10: | |
| if gold_labels[i, j]: | |
| gold_labels[i, j] = 0 | |
| return gold_labels | |
| def metrics_inter_oneside(self, bb1, bb2): | |
| xl_1, yl_1, xr_1, yr_1 = bb1 | |
| xl_2, yl_2, xr_2, yr_2 = bb2 | |
| # w_1 = xr_1 - xl_1 | |
| w_2 = xr_2 - xl_2 | |
| # h_1 = yr_1 - yl_1 | |
| h_2 = yr_2 - yl_2 | |
| w_inter = min(xr_1, xr_2) - max(xl_1, xl_2) | |
| h_inter = min(yr_1, yr_2) - max(yl_1, yl_2) | |
| # a_1 = w_1 * h_1 | |
| a_2 = w_2 * h_2 | |
| a_inter = w_inter * h_inter | |
| if w_inter <= 0 or h_inter <= 0: | |
| a_inter = 0 | |
| return a_inter / a_2 | |
| def _compute_und_l( | |
| self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64] | |
| ) -> float: | |
| metrics, avali = 0.0, 0 | |
| for gold_label, prediction in zip(gold_labels, predictions): | |
| und = 0 | |
| mask_deco = (gold_label == 3).reshape(-1) | |
| mask_other = (gold_label > 0).reshape(-1) & (gold_label != 3).reshape(-1) | |
| box_deco = prediction[mask_deco] | |
| box_other = prediction[mask_other] | |
| n1, n2 = len(box_deco), len(box_other) | |
| if not n1: | |
| continue | |
| avali += 1 | |
| for i in range(n1): | |
| max_ios = 0 | |
| bb1 = box_deco[i] | |
| for j in range(n2): | |
| bb2 = box_other[j] | |
| ios = self.metrics_inter_oneside(bb1, bb2) | |
| max_ios = max(max_ios, ios) | |
| und += max_ios | |
| metrics += und / n1 | |
| return metrics / avali if avali > 0 else 0.0 | |
| def _compute_und_s( | |
| self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64] | |
| ) -> float: | |
| def is_contain(bb1, bb2): | |
| xl_1, yl_1, xr_1, yr_1 = bb1 | |
| xl_2, yl_2, xr_2, yr_2 = bb2 | |
| c1 = xl_1 <= xl_2 | |
| c2 = yl_1 <= yl_2 | |
| c3 = xr_2 >= xr_2 | |
| c4 = yr_1 >= yr_2 | |
| return c1 and c2 and c3 and c4 | |
| metrics, avali = 0.0, 0 | |
| for gold_label, prediction in zip(gold_labels, predictions): | |
| und = 0 | |
| mask_deco = (gold_label == 3).reshape(-1) | |
| mask_other = (gold_label > 0).reshape(-1) & (gold_label != 3).reshape(-1) | |
| box_deco = prediction[mask_deco] | |
| box_other = prediction[mask_other] | |
| n1, n2 = len(box_deco), len(box_other) | |
| if not n1: | |
| continue | |
| avali += 1 | |
| for i in range(n1): | |
| bb1 = box_deco[i] | |
| for j in range(n2): | |
| bb2 = box_other[j] | |
| if is_contain(bb1, bb2): | |
| und += 1 | |
| break | |
| metrics += und / n1 | |
| return metrics / avali if avali > 0 else 0.0 | |
| def _compute( | |
| self, | |
| *, | |
| predictions: Union[npt.NDArray[np.float64], List[List[float]]], | |
| gold_labels: Union[npt.NDArray[np.int64], List[int]], | |
| ) -> Dict[str, float]: | |
| predictions = np.array(predictions) | |
| gold_labels = np.array(gold_labels) | |
| predictions[:, :, ::2] *= self.canvas_width | |
| predictions[:, :, 1::2] *= self.canvas_height | |
| gold_labels = self.get_rid_of_invalid( | |
| predictions=predictions, gold_labels=gold_labels | |
| ) | |
| return { | |
| "und_l": self._compute_und_l( | |
| predictions=predictions, gold_labels=gold_labels | |
| ), | |
| "und_s": self._compute_und_s( | |
| predictions=predictions, gold_labels=gold_labels | |
| ), | |
| } | |