layout-overlap / layout-overlap.py
shunk031's picture
deploy: fc0c10e734116107123b6dce81a6df2cbbf84dfe
5a5d4bc
raw
history blame
5.77 kB
from typing import Dict, List, Tuple, TypedDict, Union
import datasets as ds
import evaluate
import numpy as np
import numpy.typing as npt
_DESCRIPTION = """\
Some overlap metrics that are different to each other in previous works.
"""
_KWARGS_DESCRIPTION = """\
FIXME
"""
_CITATION = """\
@inproceedings{li2018layoutgan,
title={LayoutGAN: Generating Graphic Layouts with Wireframe Discriminators},
author={Li, Jianan and Yang, Jimei and Hertzmann, Aaron and Zhang, Jianming and Xu, Tingfa},
booktitle={International Conference on Learning Representations},
year={2019}
}
@article{li2020attribute,
title={Attribute-conditioned layout gan for automatic graphic design},
author={Li, Jianan and Yang, Jimei and Zhang, Jianming and Liu, Chang and Wang, Christina and Xu, Tingfa},
journal={IEEE Transactions on Visualization and Computer Graphics},
volume={27},
number={10},
pages={4039--4048},
year={2020},
publisher={IEEE}
}
@inproceedings{kikuchi2021constrained,
title={Constrained graphic layout generation via latent optimization},
author={Kikuchi, Kotaro and Simo-Serra, Edgar and Otani, Mayu and Yamaguchi, Kota},
booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
pages={88--96},
year={2021}
}
"""
def convert_xywh_to_ltrb(
batch_bbox: npt.NDArray[np.float64],
) -> Tuple[
npt.NDArray[np.float64],
npt.NDArray[np.float64],
npt.NDArray[np.float64],
npt.NDArray[np.float64],
]:
xc, yc, w, h = batch_bbox
x1 = xc - w / 2
y1 = yc - h / 2
x2 = xc + w / 2
y2 = yc + h / 2
return (x1, y1, x2, y2)
class A(TypedDict):
a1: npt.NDArray[np.float64]
ai: npt.NDArray[np.float64]
class LayoutOverlap(evaluate.Metric):
def _info(self) -> evaluate.EvaluationModuleInfo:
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=ds.Features(
{
"bbox": ds.Sequence(ds.Sequence(ds.Value("float64"))),
"mask": ds.Sequence(ds.Value("bool")),
}
),
codebase_urls=[
"https://github.com/ktrk115/const_layout/blob/master/metric.py#L138-L164",
"https://github.com/CyberAgentAILab/layout-dm/blob/main/src/trainer/trainer/helpers/metric.py#L150-L203",
],
)
def __calculate_a1_ai(self, batch_bbox: npt.NDArray[np.float64]) -> A:
l1, t1, r1, b1 = convert_xywh_to_ltrb(batch_bbox[:, :, :, None])
l2, t2, r2, b2 = convert_xywh_to_ltrb(batch_bbox[:, :, None, :])
a1 = (r1 - l1) * (b1 - t1)
# shape: (B, S, S)
l_max = np.maximum(l1, l2)
r_min = np.minimum(r1, r2)
t_max = np.maximum(t1, t2)
b_min = np.minimum(b1, b2)
cond = (l_max < r_min) & (t_max < b_min)
ai = np.where(cond, (r_min - l_max) * (b_min - t_max), 0.0)
return {"a1": a1, "ai": ai}
def _compute_ac_layout_gan(
self,
S: int,
ai: npt.NDArray[np.float64],
a1: npt.NDArray[np.float64],
batch_mask: npt.NDArray[np.bool_],
) -> npt.NDArray[np.float64]:
# shape: (B, S) -> (B, S, S)
batch_mask = ~batch_mask[:, None, :] | ~batch_mask[:, :, None]
indices = np.arange(S)
batch_mask[:, indices, indices] = True
ai[batch_mask] = 0.0
# shape: (B, S, S)
ar = np.nan_to_num(ai / a1)
score = ar.sum(axis=(1, 2))
return score
def _compute_layout_gan_pp(
self,
score_ac_layout_gan: npt.NDArray[np.float64],
batch_mask: npt.NDArray[np.bool_],
) -> npt.NDArray[np.float64]:
# shape: (B, S) -> (B,)
batch_mask = batch_mask.sum(axis=1)
# shape: (B,)
score_normalized = score_ac_layout_gan / batch_mask
score_normalized[np.isnan(score_normalized)] = 0.0
return score_normalized
def _compute_layout_gan(
self, S: int, B: int, ai: npt.NDArray[np.float64]
) -> npt.NDArray[np.float64]:
indices = np.arange(S)
ii, jj = np.meshgrid(indices, indices, indexing="ij")
# shape: ii (S, S) -> (1, S, S), jj (S, S) -> (1, S, S)
# shape: (1, S, S) -> (B, S, S)
ai[np.repeat((ii[None, :] >= jj[None, :]), axis=0, repeats=B)] = 0.0
# shape: (B, S, S) -> (B,)
score = ai.sum(axis=(1, 2))
return score
def _compute(
self,
*,
bbox: Union[npt.NDArray[np.float64], List[List[int]]],
mask: Union[npt.NDArray[np.bool_], List[List[bool]]],
) -> Dict[str, npt.NDArray[np.float64]]:
# shape: (B, model_max_length, C)
bbox = np.array(bbox)
# shape: (B, model_max_length)
mask = np.array(mask)
assert bbox.ndim == 3
assert mask.ndim == 2
# S: model_max_length
B, S, C = bbox.shape
# shape: batch_bbox (B, S, C), batch_mask (B, S) -> (B, S, 1) -> (B, S, C)
bbox[np.repeat(~mask[:, :, None], axis=2, repeats=C)] = 0.0
# shape: (C, B, S)
bbox = bbox.transpose(2, 0, 1)
A = self.__calculate_a1_ai(bbox)
# shape: (B,)
score_ac_layout_gan = self._compute_ac_layout_gan(S=S, batch_mask=mask, **A)
# shape: (B,)
score_layout_gan_pp = self._compute_layout_gan_pp(
score_ac_layout_gan=score_ac_layout_gan, batch_mask=mask
)
# shape: (B,)
score_layout_gan = self._compute_layout_gan(B=B, S=S, ai=A["ai"])
return {
"overlap-ACLayoutGAN": score_ac_layout_gan,
"overlap-LayoutGAN++": score_layout_gan_pp,
"overlap-LayoutGAN": score_layout_gan,
}