Spaces:
No application file
No application file
from typing import Dict, List, Tuple, TypedDict, Union | |
import datasets as ds | |
import evaluate | |
import numpy as np | |
import numpy.typing as npt | |
_DESCRIPTION = """\ | |
Some overlap metrics that are different to each other in previous works. | |
""" | |
_KWARGS_DESCRIPTION = """\ | |
FIXME | |
""" | |
_CITATION = """\ | |
@inproceedings{li2018layoutgan, | |
title={LayoutGAN: Generating Graphic Layouts with Wireframe Discriminators}, | |
author={Li, Jianan and Yang, Jimei and Hertzmann, Aaron and Zhang, Jianming and Xu, Tingfa}, | |
booktitle={International Conference on Learning Representations}, | |
year={2019} | |
} | |
@article{li2020attribute, | |
title={Attribute-conditioned layout gan for automatic graphic design}, | |
author={Li, Jianan and Yang, Jimei and Zhang, Jianming and Liu, Chang and Wang, Christina and Xu, Tingfa}, | |
journal={IEEE Transactions on Visualization and Computer Graphics}, | |
volume={27}, | |
number={10}, | |
pages={4039--4048}, | |
year={2020}, | |
publisher={IEEE} | |
} | |
@inproceedings{kikuchi2021constrained, | |
title={Constrained graphic layout generation via latent optimization}, | |
author={Kikuchi, Kotaro and Simo-Serra, Edgar and Otani, Mayu and Yamaguchi, Kota}, | |
booktitle={Proceedings of the 29th ACM International Conference on Multimedia}, | |
pages={88--96}, | |
year={2021} | |
} | |
""" | |
def convert_xywh_to_ltrb( | |
batch_bbox: npt.NDArray[np.float64], | |
) -> Tuple[ | |
npt.NDArray[np.float64], | |
npt.NDArray[np.float64], | |
npt.NDArray[np.float64], | |
npt.NDArray[np.float64], | |
]: | |
xc, yc, w, h = batch_bbox | |
x1 = xc - w / 2 | |
y1 = yc - h / 2 | |
x2 = xc + w / 2 | |
y2 = yc + h / 2 | |
return (x1, y1, x2, y2) | |
class A(TypedDict): | |
a1: npt.NDArray[np.float64] | |
ai: npt.NDArray[np.float64] | |
class LayoutOverlap(evaluate.Metric): | |
def _info(self) -> evaluate.EvaluationModuleInfo: | |
return evaluate.MetricInfo( | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
features=ds.Features( | |
{ | |
"bbox": ds.Sequence(ds.Sequence(ds.Value("float64"))), | |
"mask": ds.Sequence(ds.Value("bool")), | |
} | |
), | |
codebase_urls=[ | |
"https://github.com/ktrk115/const_layout/blob/master/metric.py#L138-L164", | |
"https://github.com/CyberAgentAILab/layout-dm/blob/main/src/trainer/trainer/helpers/metric.py#L150-L203", | |
], | |
) | |
def __calculate_a1_ai(self, batch_bbox: npt.NDArray[np.float64]) -> A: | |
l1, t1, r1, b1 = convert_xywh_to_ltrb(batch_bbox[:, :, :, None]) | |
l2, t2, r2, b2 = convert_xywh_to_ltrb(batch_bbox[:, :, None, :]) | |
a1 = (r1 - l1) * (b1 - t1) | |
# shape: (B, S, S) | |
l_max = np.maximum(l1, l2) | |
r_min = np.minimum(r1, r2) | |
t_max = np.maximum(t1, t2) | |
b_min = np.minimum(b1, b2) | |
cond = (l_max < r_min) & (t_max < b_min) | |
ai = np.where(cond, (r_min - l_max) * (b_min - t_max), 0.0) | |
return {"a1": a1, "ai": ai} | |
def _compute_ac_layout_gan( | |
self, | |
S: int, | |
ai: npt.NDArray[np.float64], | |
a1: npt.NDArray[np.float64], | |
batch_mask: npt.NDArray[np.bool_], | |
) -> npt.NDArray[np.float64]: | |
# shape: (B, S) -> (B, S, S) | |
batch_mask = ~batch_mask[:, None, :] | ~batch_mask[:, :, None] | |
indices = np.arange(S) | |
batch_mask[:, indices, indices] = True | |
ai[batch_mask] = 0.0 | |
# shape: (B, S, S) | |
ar = np.nan_to_num(ai / a1) | |
score = ar.sum(axis=(1, 2)) | |
return score | |
def _compute_layout_gan_pp( | |
self, | |
score_ac_layout_gan: npt.NDArray[np.float64], | |
batch_mask: npt.NDArray[np.bool_], | |
) -> npt.NDArray[np.float64]: | |
# shape: (B, S) -> (B,) | |
batch_mask = batch_mask.sum(axis=1) | |
# shape: (B,) | |
score_normalized = score_ac_layout_gan / batch_mask | |
score_normalized[np.isnan(score_normalized)] = 0.0 | |
return score_normalized | |
def _compute_layout_gan( | |
self, S: int, B: int, ai: npt.NDArray[np.float64] | |
) -> npt.NDArray[np.float64]: | |
indices = np.arange(S) | |
ii, jj = np.meshgrid(indices, indices, indexing="ij") | |
# shape: ii (S, S) -> (1, S, S), jj (S, S) -> (1, S, S) | |
# shape: (1, S, S) -> (B, S, S) | |
ai[np.repeat((ii[None, :] >= jj[None, :]), axis=0, repeats=B)] = 0.0 | |
# shape: (B, S, S) -> (B,) | |
score = ai.sum(axis=(1, 2)) | |
return score | |
def _compute( | |
self, | |
*, | |
bbox: Union[npt.NDArray[np.float64], List[List[int]]], | |
mask: Union[npt.NDArray[np.bool_], List[List[bool]]], | |
) -> Dict[str, npt.NDArray[np.float64]]: | |
# shape: (B, model_max_length, C) | |
bbox = np.array(bbox) | |
# shape: (B, model_max_length) | |
mask = np.array(mask) | |
assert bbox.ndim == 3 | |
assert mask.ndim == 2 | |
# S: model_max_length | |
B, S, C = bbox.shape | |
# shape: batch_bbox (B, S, C), batch_mask (B, S) -> (B, S, 1) -> (B, S, C) | |
bbox[np.repeat(~mask[:, :, None], axis=2, repeats=C)] = 0.0 | |
# shape: (C, B, S) | |
bbox = bbox.transpose(2, 0, 1) | |
A = self.__calculate_a1_ai(bbox) | |
# shape: (B,) | |
score_ac_layout_gan = self._compute_ac_layout_gan(S=S, batch_mask=mask, **A) | |
# shape: (B,) | |
score_layout_gan_pp = self._compute_layout_gan_pp( | |
score_ac_layout_gan=score_ac_layout_gan, batch_mask=mask | |
) | |
# shape: (B,) | |
score_layout_gan = self._compute_layout_gan(B=B, S=S, ai=A["ai"]) | |
return { | |
"overlap-ACLayoutGAN": score_ac_layout_gan, | |
"overlap-LayoutGAN++": score_layout_gan_pp, | |
"overlap-LayoutGAN": score_layout_gan, | |
} | |