Spaces:
Sleeping
Sleeping
import numpy as np | |
import cv2 | |
import torch | |
import glob as glob | |
import os | |
import time | |
import matplotlib.pyplot as plt | |
from utils.annotations import CNNpostAnnotations | |
#from utils.annotations import inference_annotations | |
from utils.transforms import infer_transforms | |
def main(CNN, model, input): | |
np.random.seed(42) | |
image = input | |
orig_image = image.copy() | |
image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB) | |
image = infer_transforms(image) | |
image = torch.unsqueeze(image, 0) | |
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
CLASSES = ['__background__', 'Cell'] | |
outputs = model(image.to(DEVICE)) | |
# Load all detection to CPU for further operations. | |
outputs = [{k: v.to('cpu') for k, v in t.items()} for t in outputs] | |
print(outputs) | |
# Carry further only if there are detected boxes. | |
if len(outputs[0]['boxes']) != 0: | |
# orig_image = inference_annotations( | |
# outputs, 0.3, CLASSES, | |
# (255, 255, 255), orig_image | |
# ) | |
orig_image, cellImgs = CNNpostAnnotations( | |
outputs, 0.3, CLASSES, | |
(255, 255, 255), orig_image, CNN | |
) | |
return orig_image, cellImgs | |
cv2.destroyAllWindows() | |