Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
https://huggingface.co/spaces/meenon/AdmissionPrediction
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
import pickle
|
7 |
+
from sklearn.linear_model import LogisticRegression
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
with open('logreg_model.pkl', "rb") as file:
|
12 |
+
loaded_model = pickle.load(file)
|
13 |
+
|
14 |
+
def predict_admission(gre_score, toefl_score, university_rating, sop, lor, cgpa, research, threshold=0.5):
|
15 |
+
# Convert 'Yes'/'No' to 1/0 for the 'Research' field
|
16 |
+
research = 1 if research == "Yes" else 0
|
17 |
+
|
18 |
+
# Create an input array from the provided values
|
19 |
+
input_data = np.array([[1, gre_score, toefl_score, university_rating, sop, lor, cgpa, research]]) # Added a 1 for the intercept
|
20 |
+
|
21 |
+
# Make a prediction
|
22 |
+
prediction_probability = loaded_model.predict(input_data)[0]
|
23 |
+
prediction = 'Admit' if prediction_probability >= threshold else 'No Admit'
|
24 |
+
|
25 |
+
# Custom formatting for output
|
26 |
+
prediction_color = "green" if prediction == 'Admit' else "red"
|
27 |
+
result = f"<div style='font-size: 24px; color: {prediction_color}; font-weight: bold; font-family: Arial Black;'>Admission Prediction: {prediction}</div>"
|
28 |
+
result += f"<br>Probability: {prediction_probability:.2f}"
|
29 |
+
result += f"<br>Threshold Used: {threshold}"
|
30 |
+
|
31 |
+
return result
|
32 |
+
|
33 |
+
# Define the Gradio interface
|
34 |
+
iface = gr.Interface(
|
35 |
+
fn=predict_admission,
|
36 |
+
inputs=[
|
37 |
+
gr.Number(label="GRE Score"), # Set maximum GRE score
|
38 |
+
gr.Number(label="TOEFL Score"),
|
39 |
+
gr.Slider(minimum=1, maximum=5, label="University Rating"),
|
40 |
+
gr.Slider(minimum=1, maximum=5, label="SOP"),
|
41 |
+
gr.Slider(minimum=1, maximum=5, label="LOR"),
|
42 |
+
gr.Number(label="CGPA"),
|
43 |
+
gr.Radio(choices=["Yes", "No"], label="Research", value="No"),
|
44 |
+
gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label="Threshold")
|
45 |
+
],
|
46 |
+
outputs=gr.HTML(label="Prediction"),
|
47 |
+
allow_flagging="never"
|
48 |
+
)
|
49 |
+
|
50 |
+
iface.launch()
|