Switcher / app.py
crash10155's picture
Update app.py
136788e verified
"""
🎭 Advanced Face Swap Studio - HuggingFace Spaces Optimized
=========================================================
✅ FEATURES:
- Professional face swapping with GPU acceleration
- Batch processing for multiple videos
- Real-time processing monitor
- Lip sync integration (beta)
- Enhanced face detection and analysis
🚀 Optimized exclusively for HuggingFace Spaces environment
"""
import os
import sys
import tempfile
import time
import shutil
import subprocess as sp
import uuid
import zipfile
import gc
from pathlib import Path
# Set up environment for HuggingFace Spaces
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "TRUE"
os.environ["PYTHONPATH"] = "."
# Core imports
import gradio as gr
import torch
# Optional imports with graceful degradation
try:
import onnxruntime as ort
print("✅ ONNX Runtime loaded successfully")
except ImportError as e:
print(f"⚠️ ONNX Runtime not available: {e}")
try:
from moviepy.editor import VideoFileClip
MOVIEPY_AVAILABLE = True
print("✅ MoviePy loaded successfully")
except ImportError as e:
print(f"⚠️ MoviePy not available: {e}")
MOVIEPY_AVAILABLE = False
# Try to import enhancement modules - make this more robust
ENHANCEMENT_AVAILABLE = False
try:
import importlib.util
# Check if the modules exist
face_enhancer_path = Path("SwitcherAI/processors/frame/modules/face_enhancer.py")
frame_enhancer_path = Path("SwitcherAI/processors/frame/modules/frame_enhancer.py")
if face_enhancer_path.exists() and frame_enhancer_path.exists():
sys.path.insert(0, str(Path("SwitcherAI/processors/frame/modules").resolve()))
import face_enhancer
import frame_enhancer
ENHANCEMENT_AVAILABLE = True
print("✅ Enhancement modules loaded successfully")
else:
print("⚠️ Enhancement module files not found")
except Exception as e:
print(f"⚠️ Enhancement modules not available: {e}")
# Directory setup for HuggingFace Spaces
BASE_DIR = Path(__file__).parent.resolve()
TEMP_DIR = BASE_DIR / "temp_workspace"
OUTPUT_DIR = BASE_DIR / "outputs"
CONVERT_DIR = BASE_DIR / "Convert"
ASSETS_DIR = BASE_DIR / ".assets" / "models"
# Create directories with better error handling
for directory in [TEMP_DIR, OUTPUT_DIR, CONVERT_DIR, ASSETS_DIR]:
try:
directory.mkdir(parents=True, exist_ok=True)
print(f"📁 Directory ready: {directory}")
except Exception as e:
print(f"⚠️ Failed to create directory {directory}: {e}")
print(f"📁 Base directory: {BASE_DIR}")
print(f"📂 Temp directory: {TEMP_DIR}")
print(f"📤 Output directory: {OUTPUT_DIR}")
print(f"🎯 Assets directory: {ASSETS_DIR}")
print(f"📁 Convert directory: {CONVERT_DIR}")
# Try to set up SwitcherAI temp directory
try:
sys.path.insert(0, str(BASE_DIR))
from SwitcherAI.utilities import conditional_download
# Set up temp directory for SwitcherAI
temp_switcher_dir = TEMP_DIR / "switcher_temp"
temp_switcher_dir.mkdir(exist_ok=True)
# Set environment variable for temp directory
os.environ['SWITCHER_TEMP_DIR'] = str(temp_switcher_dir)
print("🔧 SwitcherAI utilities loaded successfully")
except ImportError as e:
print(f"⚠️ Could not import SwitcherAI utilities: {e}")
print("🔄 Using default temp directory behavior")
# Download required model files with better error handling
def download_required_models():
"""Download required model files if not present"""
import urllib.request
import urllib.error
models_to_download = [
{
'name': 'inswapper_128_fp16.onnx',
'url': 'https://huggingface.co/ninjawick/webui-faceswap-unlocked/resolve/main/inswapper_128_fp16.onnx',
'path': ASSETS_DIR / 'inswapper_128_fp16.onnx',
'description': 'InSwapper FP16 face swap model'
},
{
'name': 'inswapper_128.onnx',
'url': 'https://huggingface.co/xingren23/comfyflow-models/resolve/main/insightface/inswapper_128.onnx',
'path': ASSETS_DIR / 'inswapper_128.onnx',
'description': 'InSwapper face swap model'
},
{
'name': 'GFPGANv1.4.pth',
'url': 'https://huggingface.co/gmk123/GFPGAN/resolve/main/GFPGANv1.4.pth',
'path': ASSETS_DIR / 'GFPGANv1.4.pth',
'description': 'GFPGAN face enhancement model'
}
]
for model in models_to_download:
model_path = model['path']
model_url = model['url']
model_name = model['name']
try:
if model_path.exists() and model_path.stat().st_size > 1024: # Check if file exists and is > 1KB
file_size = model_path.stat().st_size / (1024 * 1024) # MB
print(f"✅ {model_name} already exists ({file_size:.1f}MB)")
continue
except Exception as e:
print(f"⚠️ Error checking {model_name}: {e}")
try:
print(f"📥 Downloading {model_name}...")
print(f" Description: {model['description']}")
print(f" URL: {model_url}")
print(f" Path: {model_path}")
# Ensure parent directory exists
model_path.parent.mkdir(parents=True, exist_ok=True)
# Create a progress callback
def progress_callback(block_num, block_size, total_size):
if total_size > 0:
percent = min(100, (block_num * block_size * 100) / total_size)
if block_num % 200 == 0: # Update every 200 blocks to avoid spam
print(f" Progress: {percent:.1f}%")
# Download with progress and proper headers for HuggingFace
req = urllib.request.Request(model_url)
req.add_header('User-Agent', 'Mozilla/5.0 (compatible; FaceSwapStudio/1.0)')
with urllib.request.urlopen(req) as response:
total_size = int(response.headers.get('Content-Length', 0))
downloaded = 0
with open(model_path, 'wb') as f:
while True:
chunk = response.read(8192)
if not chunk:
break
f.write(chunk)
downloaded += len(chunk)
if total_size > 0 and downloaded % (8192 * 100) == 0: # Progress every ~800KB
percent = (downloaded * 100) / total_size
print(f" Progress: {percent:.1f}%")
# Verify download
if model_path.exists() and model_path.stat().st_size > 1024:
file_size = model_path.stat().st_size / (1024 * 1024) # MB
print(f"✅ {model_name} downloaded successfully ({file_size:.1f}MB)")
else:
print(f"❌ {model_name} download failed - file not created or too small")
# Clean up failed download
if model_path.exists():
model_path.unlink()
except urllib.error.URLError as e:
print(f"❌ Network error downloading {model_name}: {e}")
except Exception as e:
print(f"❌ Error downloading {model_name}: {e}")
# Download models at startup - BEFORE web interface
print("\n🔄 Checking required model files...")
try:
download_required_models()
print("✅ Model check complete\n")
except Exception as e:
print(f"⚠️ Model download failed: {e}\n")
# Global variables
current_process = None
last_output_path = None
last_batch_mode = False
def get_available_gpus():
"""Get list of available CUDA devices for HuggingFace Spaces"""
print("🔍 Detecting GPU devices...")
available_gpus = []
if not torch.cuda.is_available():
print("❌ CUDA not available")
return ["CPU Only"]
try:
device_count = torch.cuda.device_count()
print(f"🔢 CUDA devices detected: {device_count}")
for i in range(device_count):
try:
props = torch.cuda.get_device_properties(i)
gpu_name = props.name
gpu_memory = props.total_memory / (1024**3) # GB
# Test device accessibility
torch.cuda.set_device(i)
test_tensor = torch.tensor([1.0], device=f'cuda:{i}')
gpu_entry = f"GPU {i}: {gpu_name} ({gpu_memory:.1f}GB)"
available_gpus.append(gpu_entry)
print(f"✅ {gpu_entry}")
del test_tensor
torch.cuda.empty_cache()
except Exception as e:
print(f"❌ Error with GPU {i}: {e}")
available_gpus.append(f"GPU {i}: Error")
except Exception as e:
print(f"❌ GPU detection failed: {e}")
available_gpus.append("CPU Only")
return available_gpus
def set_gpu_device(gpu_selection):
"""Set CUDA device based on selection"""
try:
if gpu_selection.startswith("GPU") and "Error" not in gpu_selection:
gpu_id = gpu_selection.split(":")[0].split(" ")[1]
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
print(f"🖥️ Using GPU {gpu_id}")
return gpu_id
else:
os.environ["CUDA_VISIBLE_DEVICES"] = ""
print("🖥️ Using CPU mode")
return "cpu"
except Exception as e:
print(f"⚠️ Error setting GPU device: {e}")
os.environ["CUDA_VISIBLE_DEVICES"] = ""
return "cpu"
def safe_copy_file(source, destination):
"""Safely copy file with verification"""
try:
if isinstance(source, str):
source = Path(source)
if isinstance(destination, str):
destination = Path(destination)
destination.parent.mkdir(parents=True, exist_ok=True)
# Check source file exists and is readable
if not source.exists():
print(f"❌ Source file does not exist: {source}")
return False
if source.stat().st_size == 0:
print(f"❌ Source file is empty: {source}")
return False
shutil.copy2(source, destination)
# Verify copy
if destination.exists() and destination.stat().st_size > 0:
print(f"✅ File copied: {destination.name}")
return True
else:
print(f"❌ Copy verification failed: {destination.name}")
return False
except Exception as e:
print(f"❌ Copy error: {e}")
return False
def handle_batch_file_upload(files):
"""Handle multiple file uploads for batch mode"""
if not files:
return "📁 No files uploaded"
# Clear existing files in convert directory
try:
for existing_file in CONVERT_DIR.glob("*"):
if existing_file.is_file():
existing_file.unlink()
except Exception as e:
print(f"⚠️ Error cleaning convert directory: {e}")
uploaded_count = 0
failed_count = 0
for file in files:
try:
if file is None:
continue
# Get the original filename
original_name = Path(file.name).name if hasattr(file, 'name') else f"video_{uploaded_count}.mp4"
# Copy file to convert directory
dest_path = CONVERT_DIR / original_name
if safe_copy_file(file, dest_path):
file_size = dest_path.stat().st_size / (1024 * 1024) # MB
print(f"✅ Uploaded: {original_name} ({file_size:.1f}MB)")
uploaded_count += 1
else:
print(f"❌ Failed to upload: {original_name}")
failed_count += 1
except Exception as e:
print(f"❌ Error uploading file: {e}")
failed_count += 1
status_msg = f"📦 Batch Upload Complete:\n✅ Uploaded: {uploaded_count} files\n"
if failed_count > 0:
status_msg += f"❌ Failed: {failed_count} files\n"
# List uploaded files
try:
uploaded_files = [f.name for f in CONVERT_DIR.glob("*.mp4")] + [f.name for f in CONVERT_DIR.glob("*.avi")] + [f.name for f in CONVERT_DIR.glob("*.mov")]
if uploaded_files:
status_msg += f"📁 Files ready for processing:\n" + "\n".join([f" • {f}" for f in uploaded_files[:10]])
if len(uploaded_files) > 10:
status_msg += f"\n ... and {len(uploaded_files) - 10} more"
except Exception as e:
print(f"⚠️ Error listing files: {e}")
return status_msg
def resize_video(input_path, output_path, fps=30):
"""Resize/process video with fallback"""
try:
if not MOVIEPY_AVAILABLE:
print("⚠️ MoviePy not available - copying video directly")
shutil.copy2(input_path, output_path)
return True
print(f"🎬 Processing video: {input_path.name}")
clip = VideoFileClip(str(input_path))
clip.write_videofile(str(output_path), fps=fps, audio_codec='aac', verbose=False, logger=None)
clip.close()
print("✅ Video processed successfully")
return True
except Exception as e:
print(f"❌ Video processing failed: {e}")
try:
shutil.copy2(input_path, output_path)
return True
except Exception as e2:
print(f"❌ Fallback copy failed: {e2}")
return False
def extract_audio(video_path, audio_path):
"""Extract audio from video"""
try:
if not MOVIEPY_AVAILABLE:
print("⚠️ MoviePy not available - cannot extract audio")
return False
clip = VideoFileClip(str(video_path))
if clip.audio is not None:
clip.audio.write_audiofile(str(audio_path), logger=None, verbose=False)
clip.close()
return True
else:
clip.close()
return False
except Exception as e:
print(f"❌ Audio extraction failed: {e}")
return False
def cleanup_temp_files():
"""Clean up temporary files"""
try:
for file in TEMP_DIR.glob("*"):
if file.is_file():
file.unlink()
print("🧹 Temp files cleaned")
except Exception as e:
print(f"⚠️ Cleanup error: {e}")
def cleanup_convert_files():
"""Clean up convert directory files"""
try:
for file in CONVERT_DIR.glob("*"):
if file.is_file():
file.unlink()
print("🧹 Convert directory cleaned")
except Exception as e:
print(f"⚠️ Convert cleanup error: {e}")
def create_batch_zip():
"""Create zip file of all output files"""
try:
output_files = list(OUTPUT_DIR.glob("*.mp4")) + list(OUTPUT_DIR.glob("*.avi"))
if not output_files:
return None
zip_path = OUTPUT_DIR / f"batch_results_{int(time.time())}.zip"
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for file in output_files:
zipf.write(file, file.name)
print(f"📦 Added to zip: {file.name}")
print(f"✅ Batch zip created: {zip_path.name}")
return zip_path
except Exception as e:
print(f"❌ Zip creation failed: {e}")
return None
def get_download_file():
"""Get the latest output file for download"""
try:
output_files = list(OUTPUT_DIR.glob("*.mp4")) + list(OUTPUT_DIR.glob("*.avi")) + list(OUTPUT_DIR.glob("*.zip"))
if not output_files:
return None, "📁 No output files found"
latest_file = max(output_files, key=lambda f: f.stat().st_ctime)
file_size = latest_file.stat().st_size / (1024 * 1024) # MB
return str(latest_file), f"📥 Ready: {latest_file.name} ({file_size:.1f}MB)"
except Exception as e:
return None, f"❌ Error: {e}"
def run_single_video(source_image, target_video, frame_processor, face_analyser_direction,
face_recognition, face_analyser_gender, face_analyser_age, skip_audio,
keep_fps, lip_syncer_model, enable_lip_sync, gpu_selection):
"""Process single video"""
global last_output_path, last_batch_mode, current_process
last_batch_mode = False
try:
set_gpu_device(gpu_selection)
# Setup temp files
temp_source = TEMP_DIR / 'source-image.jpg'
temp_target = TEMP_DIR / 'resize-vid.mp4'
# Copy and process files
if not safe_copy_file(Path(source_image), temp_source):
return "❌ Failed to copy source image", ""
if not resize_video(Path(target_video), temp_target):
return "❌ Video processing failed", ""
# Generate output filename
source_name = Path(source_image).stem
target_name = Path(target_video).stem
suffix = "_lipsynced" if enable_lip_sync else ""
output_filename = f"{source_name}_{target_name}{suffix}.mp4"
output_path = OUTPUT_DIR / output_filename
# Handle lip sync
audio_path = None
if enable_lip_sync:
audio_path = TEMP_DIR / 'target-audio.wav'
if not extract_audio(temp_target, audio_path):
print("⚠️ Lip sync disabled - audio extraction failed")
enable_lip_sync = False
# Build command
execution_provider = "cuda" if gpu_selection.startswith("GPU") and "Error" not in gpu_selection else "cpu"
cmd = [
sys.executable, "run.py",
"--execution-providers", execution_provider,
"--execution-thread-count", "8",
"--reference-face-distance", "1.5",
"-s", str(temp_source),
"-t", str(temp_target),
"-o", str(output_path),
"--frame-processors"] + frame_processor + [
"--face-analyser-direction", face_analyser_direction,
"--face-analyser-age", face_analyser_age
]
if enable_lip_sync and audio_path:
cmd.extend(["--source-paths", str(audio_path)])
cmd.extend(["--lip-syncer-model", lip_syncer_model])
if 'lip_syncer' not in frame_processor:
idx = cmd.index("--frame-processors") + 1
cmd[idx:idx] = ['lip_syncer']
if face_recognition != 'none':
cmd.extend(["--face-recognition", face_recognition])
if face_analyser_gender != 'none':
cmd.extend(["--face-analyser-gender", face_analyser_gender])
if skip_audio and not enable_lip_sync:
cmd.append("--skip-audio")
if keep_fps:
cmd.append("--keep-fps")
print("🚀 Starting face swap processing...")
print(f"📋 Command: {' '.join(cmd)}")
start_time = time.time()
current_process = sp.Popen(
cmd,
stdout=sp.PIPE,
stderr=sp.STDOUT,
text=True,
bufsize=1,
cwd=str(BASE_DIR)
)
cli_output = ""
while True:
output = current_process.stdout.readline()
if output == '' and current_process.poll() is not None:
break
if output:
line = output.strip()
print(line)
cli_output += line + "\n"
# Keep output manageable
lines = cli_output.split('\n')
if len(lines) > 50:
cli_output = '\n'.join(lines[-50:])
yield None, cli_output
rc = current_process.poll()
execution_time = time.time() - start_time
if rc != 0:
return "❌ Processing failed", cli_output + f"\n\n⏱️ Time: {execution_time:.2f}s"
# Cleanup
try:
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
if audio_path and audio_path.exists():
audio_path.unlink()
except Exception as e:
print(f"⚠️ Cleanup error: {e}")
last_output_path = str(output_path)
return str(output_path), cli_output + f"\n\n✅ Completed in {execution_time:.2f}s"
except Exception as e:
return f"❌ Error: {e}", ""
def run_batch_processing(source_image, frame_processor, face_analyser_direction, face_recognition,
face_analyser_gender, skip_audio, keep_fps, lip_syncer_model, enable_lip_sync, gpu_selection):
"""Process all videos in Convert folder"""
global last_output_path, last_batch_mode, current_process
last_batch_mode = True
try:
set_gpu_device(gpu_selection)
video_extensions = ['*.mp4', '*.avi', '*.mov', '*.mkv']
video_files = []
for ext in video_extensions:
video_files.extend(CONVERT_DIR.glob(ext))
if not video_files:
yield None, f"📁 No video files found in Convert folder.\nPlease upload videos using the file input above."
return
temp_source = TEMP_DIR / 'source-image.jpg'
if not safe_copy_file(Path(source_image), temp_source):
yield None, "❌ Failed to copy source image"
return
source_name = Path(source_image).stem
cli_output = f"📊 Processing {len(video_files)} videos in batch mode\n🎯 Source: {source_name}\n\n"
yield None, cli_output
successful = 0
failed = 0
for i, video_file in enumerate(video_files, 1):
current_output = f"[{i}/{len(video_files)}] 🎬 {video_file.name}\n"
cli_output += current_output
yield None, cli_output
temp_target = TEMP_DIR / 'resize-vid.mp4'
if not resize_video(video_file, temp_target):
error_msg = f"❌ Video resize failed\n"
cli_output += error_msg
failed += 1
yield None, cli_output
continue
suffix = "_lipsynced" if enable_lip_sync else ""
output_filename = f"{source_name}_{video_file.stem}{suffix}.mp4"
output_path = OUTPUT_DIR / output_filename
# Handle lip sync
audio_path = None
if enable_lip_sync:
audio_path = TEMP_DIR / 'target-audio.wav'
if not extract_audio(temp_target, audio_path):
enable_lip_sync = False
# Build command
execution_provider = "cuda" if gpu_selection.startswith("GPU") and "Error" not in gpu_selection else "cpu"
cmd = [
sys.executable, "run.py",
"--execution-providers", execution_provider,
"--execution-thread-count", "8",
"--reference-face-distance", "1.5",
"-s", str(temp_source),
"-t", str(temp_target),
"-o", str(output_path),
"--frame-processors"] + frame_processor + [
"--face-analyser-direction", face_analyser_direction
]
if enable_lip_sync and audio_path:
cmd.extend(["--source-paths", str(audio_path)])
cmd.extend(["--lip-syncer-model", lip_syncer_model])
if 'lip_syncer' not in frame_processor:
idx = cmd.index("--frame-processors") + 1
cmd[idx:idx] = ['lip_syncer']
if face_recognition != 'none':
cmd.extend(["--face-recognition", face_recognition])
if face_analyser_gender != 'none':
cmd.extend(["--face-analyser-gender", face_analyser_gender])
if skip_audio and not enable_lip_sync:
cmd.append("--skip-audio")
if keep_fps:
cmd.append("--keep-fps")
try:
start_time = time.time()
current_process = sp.Popen(
cmd,
stdout=sp.PIPE,
stderr=sp.STDOUT,
text=True,
bufsize=1,
cwd=str(BASE_DIR)
)
while True:
output = current_process.stdout.readline()
if output == '' and current_process.poll() is not None:
break
if output:
line = output.strip()
print(line)
rc = current_process.poll()
execution_time = time.time() - start_time
if rc == 0:
success_msg = f"✅ Completed in {execution_time:.2f}s\n\n"
cli_output += success_msg
successful += 1
else:
error_msg = f"❌ Processing failed\n\n"
cli_output += error_msg
failed += 1
yield None, cli_output
# Cleanup
try:
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
if audio_path and audio_path.exists():
audio_path.unlink()
except Exception as e:
print(f"⚠️ Cleanup error: {e}")
except Exception as e:
error_msg = f"❌ Error: {e}\n\n"
cli_output += error_msg
failed += 1
yield None, cli_output
# Final summary
final_msg = f"\n=== BATCH COMPLETE ===\n✅ Successful: {successful}\n❌ Failed: {failed}\n"
cli_output += final_msg
if successful > 0:
last_output_path = str(create_batch_zip())
yield None, cli_output
except Exception as e:
yield None, f"❌ Batch processing error: {e}"
def handle_processing(source_image, target_video, frame_processor, face_analyser_direction, face_recognition,
face_analyser_gender, face_analyser_age, skip_audio, keep_fps,
lip_syncer_model, enable_lip_sync, use_folder_mode, gpu_selection):
"""Main processing handler"""
try:
if use_folder_mode:
for _, cli_output in run_batch_processing(
source_image, frame_processor, face_analyser_direction, face_recognition,
face_analyser_gender, skip_audio, keep_fps, lip_syncer_model, enable_lip_sync, gpu_selection
):
yield cli_output, "⏹️ CANCEL"
yield cli_output + "\n🎉 Batch processing complete!", "📥 DOWNLOAD"
else:
for video_result, cli_output in run_single_video(
source_image, target_video, frame_processor, face_analyser_direction, face_recognition,
face_analyser_gender, face_analyser_age, skip_audio, keep_fps,
lip_syncer_model, enable_lip_sync, gpu_selection
):
yield cli_output, "⏹️ CANCEL"
if video_result and not video_result.startswith("❌"):
yield cli_output + "\n🎉 Processing complete!", "📥 DOWNLOAD"
else:
yield cli_output, "🔄 RESET"
except Exception as e:
yield f"❌ Processing error: {e}", "🔄 RESET"
def cancel_processing():
"""Cancel current processing"""
global current_process
try:
if current_process and current_process.poll() is None:
current_process.terminate()
current_process.wait(timeout=10)
return "⏹️ Processing cancelled"
else:
return "⚠️ No active processing"
except Exception as e:
try:
if current_process:
current_process.kill()
current_process.wait()
return f"⏹️ Processing force-cancelled: {e}"
except:
return f"❌ Cancel failed: {e}"
def reset_interface():
"""Reset interface to defaults"""
try:
cleanup_temp_files()
cleanup_convert_files()
return (
None, # source_image
None, # target_video
['face_swapper'] + (['face_enhancer'] if ENHANCEMENT_AVAILABLE else []), # frame_processor
'top-bottom', # face_analyser_direction
'reference', # face_recognition
'female', # face_analyser_gender
'adult', # face_analyser_age
False, # skip_audio
True, # keep_fps
'wav2lip_gan_96', # lip_syncer_model
False, # enable_lip_sync
False, # use_folder_mode
AVAILABLE_GPUS[0] if AVAILABLE_GPUS else "CPU Only", # gpu_selection
"🔧 Interface reset. Ready for new session!", # cli_output
"🚀 START PROCESSING" # button text
)
except Exception as e:
return (None, None, ['face_swapper'], 'top-bottom', 'reference', 'female', 'adult',
False, True, 'wav2lip_gan_96', False, False, "CPU Only",
f"⚠️ Reset error: {e}", "🚀 START PROCESSING")
def handle_download():
"""Handle download button click"""
try:
download_path, status = get_download_file()
if download_path:
return download_path, status, gr.update(visible=True), gr.update(visible=False)
else:
return None, status, gr.update(visible=False), gr.update(visible=True)
except Exception as e:
return None, f"❌ Download error: {e}", gr.update(visible=False), gr.update(visible=True)
def handle_action_button(button_text, *inputs):
"""Handle multi-purpose action button"""
try:
if "RESET" in button_text:
return reset_interface()
elif "CANCEL" in button_text:
cancel_msg = cancel_processing()
return inputs + (cancel_msg, "🔄 RESET")
else:
return inputs + ("", button_text)
except Exception as e:
return inputs + (f"❌ Action error: {e}", "🔄 RESET")
def toggle_batch_mode(use_folder_mode):
"""Handle batch mode toggle"""
try:
if use_folder_mode:
return gr.update(
label="📁 Target Videos (Drag multiple files here)",
file_count="multiple",
file_types=["video"]
)
else:
return gr.update(
label="Target Video (Video to modify)",
file_count="single",
file_types=["video"]
)
except Exception as e:
print(f"⚠️ Toggle batch mode error: {e}")
return gr.update(label="Target Video")
def handle_file_upload(files, use_folder_mode):
"""Handle file uploads - single or multiple"""
try:
if use_folder_mode and files:
# Handle batch upload
return handle_batch_file_upload(files)
elif not use_folder_mode and files:
# Single file mode - just return status
return f"✅ Single video uploaded: {Path(files.name).name if hasattr(files, 'name') else 'video file'}"
else:
return "📁 No files uploaded"
except Exception as e:
return f"❌ Upload error: {e}"
# Initialize GPU detection
try:
AVAILABLE_GPUS = get_available_gpus()
print(f"🖥️ Available GPUs: {AVAILABLE_GPUS}")
except Exception as e:
print(f"⚠️ GPU detection failed: {e}")
AVAILABLE_GPUS = ["CPU Only"]
# Gradio Interface
def create_interface():
with gr.Blocks(
theme=gr.themes.Monochrome(
primary_hue=gr.themes.colors.teal,
secondary_hue=gr.themes.colors.gray,
font=gr.themes.GoogleFont('Inter')
).set(
background_fill_primary="#1f1f1f",
background_fill_secondary="#2d2d2d"
),
css="""
.gradio-container { max-width: 1400px !important; margin: 0 auto !important; }
.main-header { text-align: center; padding: 1rem; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 12px; color: white; margin-bottom: 1rem; }
.control-panel { background: rgba(102, 126, 234, 0.1); border-radius: 12px; padding: 1rem; margin-bottom: 1rem; border: 2px solid rgba(102, 126, 234, 0.2); }
.section-header { font-weight: 600; color: #667eea; margin-bottom: 1rem; border-bottom: 2px solid #667eea; padding-bottom: 0.5rem; }
"""
) as interface:
# Header
with gr.Column(elem_classes="main-header"):
gr.Markdown("# 🎭 Advanced Face Swap Studio\n**HuggingFace Spaces Optimized**")
with gr.Row():
# Left Column - Input & Controls
with gr.Column(scale=2):
with gr.Group(elem_classes="control-panel"):
gr.HTML('<div class="section-header">📸 Input Files</div>')
source_image = gr.File(
label="Source Image (Face to use)",
file_types=["image"],
file_count="single"
)
# Batch mode toggle
use_folder_mode = gr.Checkbox(
label="📁 Batch Mode (Process multiple videos)",
value=False
)
target_video = gr.File(
label="Target Video (Video to modify)",
file_types=["video"],
file_count="single"
)
# Upload status display
upload_status = gr.Textbox(
label="Upload Status",
value="Ready to upload files...",
interactive=False,
lines=3
)
with gr.Group(elem_classes="control-panel"):
gr.HTML('<div class="section-header">🎮 Controls</div>')
start_button = gr.Button("🚀 START PROCESSING", variant="primary", size="lg")
action_button = gr.Button("🔄 RESET", variant="secondary", size="lg")
download_button = gr.Button("📥 DOWNLOAD", variant="secondary", size="lg")
download_status = gr.Textbox(
label="Download Status",
value="Ready for processing...",
interactive=False,
lines=2
)
download_file = gr.File(
label="Download File",
visible=False,
interactive=False
)
# Middle Column - Configuration
with gr.Column(scale=3):
with gr.Group(elem_classes="control-panel"):
gr.HTML('<div class="section-header">⚙️ Processing Configuration</div>')
with gr.Row():
with gr.Column():
# Frame processing
available_processors = ['face_swapper']
if ENHANCEMENT_AVAILABLE:
available_processors.extend(['face_enhancer', 'frame_enhancer'])
frame_processor = gr.CheckboxGroup(
choices=available_processors,
label='Frame Processors',
value=['face_swapper'] + (['face_enhancer'] if ENHANCEMENT_AVAILABLE else [])
)
enable_lip_sync = gr.Checkbox(label="🎵 Enable Lip Sync (Beta)", value=False)
lip_syncer_model = gr.Dropdown(
label='Lip Sync Model',
choices=['wav2lip_96', 'wav2lip_gan_96'],
value='wav2lip_gan_96',
visible=False
)
with gr.Column():
# Face analysis
face_recognition = gr.Dropdown(
label='Recognition Mode',
choices=['none', 'reference', 'many'],
value='reference'
)
face_analyser_direction = gr.Dropdown(
label='Analysis Direction',
choices=['left-right', 'right-left', 'top-bottom', 'bottom-top', 'small-large', 'large-small'],
value='top-bottom'
)
face_analyser_gender = gr.Dropdown(
label='Target Gender',
choices=['none', 'male', 'female'],
value='female'
)
face_analyser_age = gr.Dropdown(
label='Target Age Group',
choices=['child', 'teen', 'adult', 'senior'],
value='adult'
)
# Right Column - Monitor & Options
with gr.Column(scale=3):
with gr.Group(elem_classes="control-panel"):
gr.HTML('<div class="section-header">🖥️ Processing Monitor</div>')
cli_output = gr.Textbox(
label="Live Processing Output",
lines=15,
interactive=False,
show_copy_button=True,
placeholder="🔧 System ready. Configure settings and start processing..."
)
with gr.Group(elem_classes="control-panel"):
gr.HTML('<div class="section-header">🛠️ Processing Options</div>')
with gr.Row():
with gr.Column():
gpu_selection = gr.Dropdown(
label="🖥️ Compute Device",
choices=AVAILABLE_GPUS,
value=AVAILABLE_GPUS[0] if AVAILABLE_GPUS else "CPU Only"
)
skip_audio = gr.Checkbox(label="🔇 Skip Audio", value=False)
with gr.Column():
keep_fps = gr.Checkbox(label="🎬 Keep Original FPS", value=True)
# Event handlers with error handling
try:
enable_lip_sync.change(
lambda x: gr.update(visible=x),
inputs=[enable_lip_sync],
outputs=[lip_syncer_model]
)
use_folder_mode.change(
toggle_batch_mode,
inputs=[use_folder_mode],
outputs=[target_video]
)
target_video.upload(
handle_file_upload,
inputs=[target_video, use_folder_mode],
outputs=[upload_status]
)
start_button.click(
handle_processing,
inputs=[
source_image, target_video, frame_processor, face_analyser_direction,
face_recognition, face_analyser_gender, face_analyser_age,
skip_audio, keep_fps, lip_syncer_model, enable_lip_sync,
use_folder_mode, gpu_selection
],
outputs=[cli_output, action_button]
)
action_button.click(
handle_action_button,
inputs=[
action_button, source_image, target_video, frame_processor,
face_analyser_direction, face_recognition, face_analyser_gender,
face_analyser_age, skip_audio, keep_fps, lip_syncer_model,
enable_lip_sync, use_folder_mode, gpu_selection
],
outputs=[
source_image, target_video, frame_processor, face_analyser_direction,
face_recognition, face_analyser_gender, face_analyser_age,
skip_audio, keep_fps, lip_syncer_model, enable_lip_sync,
use_folder_mode, gpu_selection, cli_output, action_button
]
)
download_button.click(
handle_download,
outputs=[download_file, download_status, download_file, download_button]
)
download_file.change(
lambda: (gr.update(visible=False), gr.update(visible=True), "Ready for next download"),
outputs=[download_file, download_button, download_status]
)
except Exception as e:
print(f"⚠️ Error setting up event handlers: {e}")
return interface
# Launch application
if __name__ == "__main__":
print("\n" + "="*60)
print("🎭 Advanced Face Swap Studio - HuggingFace Spaces")
print("="*60)
print(f"📁 Directories configured:")
print(f" - Base: {BASE_DIR}")
print(f" - Temp: {TEMP_DIR}")
print(f" - Output: {OUTPUT_DIR}")
print(f" - Convert: {CONVERT_DIR}")
print(f"🖥️ GPU Support: {torch.cuda.is_available()}")
print(f"🎬 MoviePy: {'✅' if MOVIEPY_AVAILABLE else '❌'}")
print(f"✨ Enhancement: {'✅' if ENHANCEMENT_AVAILABLE else '❌'}")
print("="*60)
# Clean startup
cleanup_temp_files()
# Create and launch interface
try:
app = create_interface()
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False,
show_error=True,
max_file_size="1500mb"
)
except Exception as e:
print(f"❌ Failed to launch application: {e}")
print("🔄 Please check your dependencies and try again")