crash10155's picture
Update SwitcherAI/processors/frame/modules/face_enhancer.py
a3d5e88 verified
from typing import Any, List, Callable
import cv2
import threading
from pathlib import Path
import SwitcherAI.globals
import SwitcherAI.processors.frame.core as frame_processors
from SwitcherAI import wording
from SwitcherAI.core import update_status
from SwitcherAI.face_analyser import get_many_faces
from SwitcherAI.typing import Frame, Face
from SwitcherAI.utilities import conditional_download, resolve_relative_path, is_image, is_video
FRAME_PROCESSOR = None
THREAD_SEMAPHORE = threading.Semaphore()
THREAD_LOCK = threading.Lock()
NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_ENHANCER'
def get_frame_processor() -> Any:
global FRAME_PROCESSOR
with THREAD_LOCK:
if FRAME_PROCESSOR is None:
try:
# Import GFPGAN here to handle import errors gracefully
from gfpgan.utils import GFPGANer
model_path = resolve_relative_path('../.assets/models/GFPGANv1.4.pth')
# Convert to Path object if it's a string
if isinstance(model_path, str):
model_path = Path(model_path)
# Check if model exists
if not model_path.exists():
print(f"⚠️ GFPGAN model not found at: {model_path}")
print("🔄 Attempting to download model...")
if not pre_check():
print("❌ Failed to download GFPGAN model")
return None
FRAME_PROCESSOR = GFPGANer(
model_path = str(model_path),
upscale = 1,
device = frame_processors.get_device()
)
print("✅ GFPGAN frame processor initialized")
except ImportError as e:
print(f"⚠️ GFPGAN not available: {e}")
print("💡 Install with: pip install gfpgan")
FRAME_PROCESSOR = None
except Exception as e:
print(f"⚠️ Failed to initialize GFPGAN: {e}")
FRAME_PROCESSOR = None
return FRAME_PROCESSOR
def clear_frame_processor() -> None:
global FRAME_PROCESSOR
FRAME_PROCESSOR = None
def pre_check() -> bool:
try:
download_directory_path = resolve_relative_path('../.assets/models')
# Ensure download directory exists
if isinstance(download_directory_path, str):
download_directory_path = Path(download_directory_path)
download_directory_path.mkdir(parents=True, exist_ok=True)
# Download GFPGAN model
model_urls = [
'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth'
]
conditional_download(str(download_directory_path), model_urls)
# Verify the model was downloaded
model_path = download_directory_path / 'GFPGANv1.4.pth'
if model_path.exists() and model_path.stat().st_size > 0:
print(f"✅ GFPGAN model verified: {model_path.stat().st_size / (1024*1024):.1f}MB")
return True
else:
print("❌ GFPGAN model download failed or file is empty")
return False
except Exception as e:
print(f"❌ GFPGAN pre-check failed: {e}")
return False
def pre_process() -> bool:
try:
# Check if we have valid input
if not is_image(SwitcherAI.globals.target_path) and not is_video(SwitcherAI.globals.target_path):
update_status(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
return False
# Check if GFPGAN is available
processor = get_frame_processor()
if processor is None:
print("⚠️ GFPGAN not available, face enhancement will be skipped")
return False
return True
except Exception as e:
print(f"⚠️ Face enhancer pre-process failed: {e}")
return False
def post_process() -> None:
clear_frame_processor()
def enhance_face(target_face: Face, temp_frame: Frame) -> Frame:
"""Enhanced face enhancement with error handling"""
try:
processor = get_frame_processor()
if processor is None:
print("⚠️ GFPGAN processor not available, returning original frame")
return temp_frame
start_x, start_y, end_x, end_y = map(int, target_face['bbox'])
padding_x = int((end_x - start_x) * 0.5)
padding_y = int((end_y - start_y) * 0.5)
start_x = max(0, start_x - padding_x)
start_y = max(0, start_y - padding_y)
end_x = max(0, end_x + padding_x)
end_y = max(0, end_y + padding_y)
# Ensure coordinates are within frame bounds
height, width = temp_frame.shape[:2]
end_x = min(end_x, width)
end_y = min(end_y, height)
crop_frame = temp_frame[start_y:end_y, start_x:end_x]
if crop_frame.size > 0:
with THREAD_SEMAPHORE:
try:
_, _, enhanced_crop = processor.enhance(
crop_frame,
paste_back = True
)
temp_frame[start_y:end_y, start_x:end_x] = enhanced_crop
except Exception as e:
print(f"⚠️ Face enhancement failed: {e}")
# Return original frame if enhancement fails
pass
except Exception as e:
print(f"⚠️ Error in enhance_face: {e}")
return temp_frame
def process_frame(source_face: Face, reference_face: Face, temp_frame: Frame) -> Frame:
"""Process frame with enhanced error handling"""
try:
# Check if processor is available
processor = get_frame_processor()
if processor is None:
print("⚠️ Face enhancer not available, skipping enhancement")
return temp_frame
many_faces = get_many_faces(temp_frame)
if many_faces:
for target_face in many_faces:
temp_frame = enhance_face(target_face, temp_frame)
except Exception as e:
print(f"⚠️ Error in process_frame: {e}")
return temp_frame
def process_frames(source_path: str, temp_frame_paths: List[str], update: Callable[[], None]) -> None:
"""Process multiple frames with progress updates"""
try:
processor = get_frame_processor()
if processor is None:
print("⚠️ Face enhancer not available, skipping frame enhancement")
if update:
update()
return
for temp_frame_path in temp_frame_paths:
try:
temp_frame = cv2.imread(temp_frame_path)
if temp_frame is not None:
result_frame = process_frame(None, None, temp_frame)
cv2.imwrite(temp_frame_path, result_frame)
else:
print(f"⚠️ Failed to read frame: {temp_frame_path}")
except Exception as e:
print(f"⚠️ Error processing frame {temp_frame_path}: {e}")
if update:
update()
except Exception as e:
print(f"⚠️ Error in process_frames: {e}")
def process_image(source_path: str, target_path: str, output_path: str) -> None:
"""Process single image with error handling"""
try:
processor = get_frame_processor()
if processor is None:
print("⚠️ Face enhancer not available, copying original image")
import shutil
shutil.copy2(target_path, output_path)
return
target_frame = cv2.imread(target_path)
if target_frame is not None:
result_frame = process_frame(None, None, target_frame)
cv2.imwrite(output_path, result_frame)
else:
print(f"⚠️ Failed to read image: {target_path}")
except Exception as e:
print(f"⚠️ Error in process_image: {e}")
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
"""Process video frames"""
try:
SwitcherAI.processors.frame.core.process_video(None, temp_frame_paths, process_frames)
except Exception as e:
print(f"⚠️ Error in process_video: {e}")