Spaces:
Paused
Paused
from typing import Any, List, Callable | |
import cv2 | |
import threading | |
from pathlib import Path | |
import SwitcherAI.globals | |
import SwitcherAI.processors.frame.core as frame_processors | |
from SwitcherAI import wording | |
from SwitcherAI.core import update_status | |
from SwitcherAI.face_analyser import get_many_faces | |
from SwitcherAI.typing import Frame, Face | |
from SwitcherAI.utilities import conditional_download, resolve_relative_path, is_image, is_video | |
FRAME_PROCESSOR = None | |
THREAD_SEMAPHORE = threading.Semaphore() | |
THREAD_LOCK = threading.Lock() | |
NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_ENHANCER' | |
def get_frame_processor() -> Any: | |
global FRAME_PROCESSOR | |
with THREAD_LOCK: | |
if FRAME_PROCESSOR is None: | |
try: | |
# Import GFPGAN here to handle import errors gracefully | |
from gfpgan.utils import GFPGANer | |
model_path = resolve_relative_path('../.assets/models/GFPGANv1.4.pth') | |
# Convert to Path object if it's a string | |
if isinstance(model_path, str): | |
model_path = Path(model_path) | |
# Check if model exists | |
if not model_path.exists(): | |
print(f"⚠️ GFPGAN model not found at: {model_path}") | |
print("🔄 Attempting to download model...") | |
if not pre_check(): | |
print("❌ Failed to download GFPGAN model") | |
return None | |
FRAME_PROCESSOR = GFPGANer( | |
model_path = str(model_path), | |
upscale = 1, | |
device = frame_processors.get_device() | |
) | |
print("✅ GFPGAN frame processor initialized") | |
except ImportError as e: | |
print(f"⚠️ GFPGAN not available: {e}") | |
print("💡 Install with: pip install gfpgan") | |
FRAME_PROCESSOR = None | |
except Exception as e: | |
print(f"⚠️ Failed to initialize GFPGAN: {e}") | |
FRAME_PROCESSOR = None | |
return FRAME_PROCESSOR | |
def clear_frame_processor() -> None: | |
global FRAME_PROCESSOR | |
FRAME_PROCESSOR = None | |
def pre_check() -> bool: | |
try: | |
download_directory_path = resolve_relative_path('../.assets/models') | |
# Ensure download directory exists | |
if isinstance(download_directory_path, str): | |
download_directory_path = Path(download_directory_path) | |
download_directory_path.mkdir(parents=True, exist_ok=True) | |
# Download GFPGAN model | |
model_urls = [ | |
'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth' | |
] | |
conditional_download(str(download_directory_path), model_urls) | |
# Verify the model was downloaded | |
model_path = download_directory_path / 'GFPGANv1.4.pth' | |
if model_path.exists() and model_path.stat().st_size > 0: | |
print(f"✅ GFPGAN model verified: {model_path.stat().st_size / (1024*1024):.1f}MB") | |
return True | |
else: | |
print("❌ GFPGAN model download failed or file is empty") | |
return False | |
except Exception as e: | |
print(f"❌ GFPGAN pre-check failed: {e}") | |
return False | |
def pre_process() -> bool: | |
try: | |
# Check if we have valid input | |
if not is_image(SwitcherAI.globals.target_path) and not is_video(SwitcherAI.globals.target_path): | |
update_status(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME) | |
return False | |
# Check if GFPGAN is available | |
processor = get_frame_processor() | |
if processor is None: | |
print("⚠️ GFPGAN not available, face enhancement will be skipped") | |
return False | |
return True | |
except Exception as e: | |
print(f"⚠️ Face enhancer pre-process failed: {e}") | |
return False | |
def post_process() -> None: | |
clear_frame_processor() | |
def enhance_face(target_face: Face, temp_frame: Frame) -> Frame: | |
"""Enhanced face enhancement with error handling""" | |
try: | |
processor = get_frame_processor() | |
if processor is None: | |
print("⚠️ GFPGAN processor not available, returning original frame") | |
return temp_frame | |
start_x, start_y, end_x, end_y = map(int, target_face['bbox']) | |
padding_x = int((end_x - start_x) * 0.5) | |
padding_y = int((end_y - start_y) * 0.5) | |
start_x = max(0, start_x - padding_x) | |
start_y = max(0, start_y - padding_y) | |
end_x = max(0, end_x + padding_x) | |
end_y = max(0, end_y + padding_y) | |
# Ensure coordinates are within frame bounds | |
height, width = temp_frame.shape[:2] | |
end_x = min(end_x, width) | |
end_y = min(end_y, height) | |
crop_frame = temp_frame[start_y:end_y, start_x:end_x] | |
if crop_frame.size > 0: | |
with THREAD_SEMAPHORE: | |
try: | |
_, _, enhanced_crop = processor.enhance( | |
crop_frame, | |
paste_back = True | |
) | |
temp_frame[start_y:end_y, start_x:end_x] = enhanced_crop | |
except Exception as e: | |
print(f"⚠️ Face enhancement failed: {e}") | |
# Return original frame if enhancement fails | |
pass | |
except Exception as e: | |
print(f"⚠️ Error in enhance_face: {e}") | |
return temp_frame | |
def process_frame(source_face: Face, reference_face: Face, temp_frame: Frame) -> Frame: | |
"""Process frame with enhanced error handling""" | |
try: | |
# Check if processor is available | |
processor = get_frame_processor() | |
if processor is None: | |
print("⚠️ Face enhancer not available, skipping enhancement") | |
return temp_frame | |
many_faces = get_many_faces(temp_frame) | |
if many_faces: | |
for target_face in many_faces: | |
temp_frame = enhance_face(target_face, temp_frame) | |
except Exception as e: | |
print(f"⚠️ Error in process_frame: {e}") | |
return temp_frame | |
def process_frames(source_path: str, temp_frame_paths: List[str], update: Callable[[], None]) -> None: | |
"""Process multiple frames with progress updates""" | |
try: | |
processor = get_frame_processor() | |
if processor is None: | |
print("⚠️ Face enhancer not available, skipping frame enhancement") | |
if update: | |
update() | |
return | |
for temp_frame_path in temp_frame_paths: | |
try: | |
temp_frame = cv2.imread(temp_frame_path) | |
if temp_frame is not None: | |
result_frame = process_frame(None, None, temp_frame) | |
cv2.imwrite(temp_frame_path, result_frame) | |
else: | |
print(f"⚠️ Failed to read frame: {temp_frame_path}") | |
except Exception as e: | |
print(f"⚠️ Error processing frame {temp_frame_path}: {e}") | |
if update: | |
update() | |
except Exception as e: | |
print(f"⚠️ Error in process_frames: {e}") | |
def process_image(source_path: str, target_path: str, output_path: str) -> None: | |
"""Process single image with error handling""" | |
try: | |
processor = get_frame_processor() | |
if processor is None: | |
print("⚠️ Face enhancer not available, copying original image") | |
import shutil | |
shutil.copy2(target_path, output_path) | |
return | |
target_frame = cv2.imread(target_path) | |
if target_frame is not None: | |
result_frame = process_frame(None, None, target_frame) | |
cv2.imwrite(output_path, result_frame) | |
else: | |
print(f"⚠️ Failed to read image: {target_path}") | |
except Exception as e: | |
print(f"⚠️ Error in process_image: {e}") | |
def process_video(source_path: str, temp_frame_paths: List[str]) -> None: | |
"""Process video frames""" | |
try: | |
SwitcherAI.processors.frame.core.process_video(None, temp_frame_paths, process_frames) | |
except Exception as e: | |
print(f"⚠️ Error in process_video: {e}") |