vstar / VisualSearch /utils /general_segdet_dataset.py
Penghao Wu
init
3672502
raw
history blame
17 kB
import glob
import json
import os
import random
from PIL import Image
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from pycocotools.coco import COCO
from transformers import CLIPImageProcessor
from transformers import OwlViTProcessor
from VisualSearch.model.llava import conversation as conversation_lib
from VisualSearch.utils.utils import box_xyxy_to_cxcywh, expand2square
from VisualSearch.utils.utils import ANSWER_LIST, SHORT_QUESTION_LIST
parent_dir = os.path.dirname(os.path.abspath(__file__))
def init_objects365(base_dir):
objects365_classes = []
with open(os.path.join(parent_dir, "objects365_classes.txt")) as f:
for line in f.readlines():
objects365_classes.append(line.strip().split(": ")[-1])
objects365_classes = np.array(objects365_classes)
with open(os.path.join(base_dir, "object365", "image2bboxes.json")) as f:
image2bboxes = json.load(f)
objects365_images = list(image2bboxes.keys())
objects365_bboxes = []
for file_name in objects365_images:
bboxes = image2bboxes[file_name]
objects365_bboxes.append(bboxes)
print("objects365: ", len(objects365_images))
objects365_images = [os.path.join(base_dir, 'object365/images/train', file_name) for file_name in objects365_images]
return objects365_classes, objects365_images, objects365_bboxes
def init_cocostuff(base_dir):
cocostuff_classes = []
with open(os.path.join(parent_dir, "cocostuff_classes.txt")) as f:
for line in f.readlines()[1:]:
cocostuff_classes.append(line.strip().split(": ")[-1])
cocostuff_classes = np.array(cocostuff_classes)
cocostuff_images = []
cocostuff_labels = glob.glob(
os.path.join(base_dir, "cocostuff", "train2017", "*.png")
)
cocostuff_images = [
x.replace(".png", ".jpg").replace("cocostuff", "coco2017") for x in cocostuff_labels
]
with open(os.path.join(base_dir, "cocostuff", "annotations", "image2bboxes.json")) as f:
image2bboxes = json.load(f)
cocostuff_bboxes = []
delete_index_list = []
for i, image_path in enumerate(cocostuff_images):
file_name = image_path.split(os.sep)[-1]
if file_name not in image2bboxes:
delete_index_list.append(i)
continue
bboxes = image2bboxes[file_name]
cocostuff_bboxes.append(bboxes)
for index in sorted(delete_index_list, reverse=True):
del cocostuff_labels[index]
del cocostuff_images[index]
print("cocostuff: ", len(cocostuff_images))
return cocostuff_classes, cocostuff_images, cocostuff_labels, cocostuff_bboxes
def init_paco_lvis(base_dir):
coco_api_paco_lvis = COCO(
os.path.join(
base_dir, "vlpart", "paco", "annotations", "paco_lvis_v1_train.json"
)
)
all_classes = coco_api_paco_lvis.loadCats(coco_api_paco_lvis.getCatIds())
class_map_paco_lvis = {}
for cat in all_classes:
cat_split = cat["name"].strip().split(":")
if len(cat_split) == 1:
name = cat_split[0].split("_(")[0]
else:
assert len(cat_split) == 2
obj, part = cat_split
obj = obj.split("_(")[0]
part = part.split("_(")[0]
name = (obj, part)
class_map_paco_lvis[cat["id"]] = name
img_ids = coco_api_paco_lvis.getImgIds()
print("paco_lvis: ", len(img_ids))
return class_map_paco_lvis, img_ids, coco_api_paco_lvis
class SegDetDataset(torch.utils.data.Dataset):
pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
img_size = 1024
ignore_label = 255
def __init__(
self,
base_dir,
tokenizer,
vision_tower,
samples_per_epoch=500 * 8 * 2 * 10,
precision: str = "fp32",
num_classes_per_sample: int = 3,
exclude_val=False,
general_segdet_data="objects365||cocostuff||paco_lvis",
general_segdet_sample_rate=[2,1,1]
):
self.exclude_val = exclude_val
self.samples_per_epoch = samples_per_epoch
self.num_classes_per_sample = num_classes_per_sample
self.base_dir = base_dir
self.tokenizer = tokenizer
self.precision = precision
self.transform = OwlViTProcessor.from_pretrained("google/owlvit-base-patch16")
self.clip_image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
self.short_question_list = SHORT_QUESTION_LIST
self.answer_list = ANSWER_LIST
self.data2list = {}
self.data2classes = {}
self.general_segdet_datas = general_segdet_data.split("||")
num_images = []
for ds in self.general_segdet_datas:
if ds == "cocostuff":
classes, images, labels, bboxes = eval("init_{}".format(ds))(base_dir)
self.data2list[ds] = (images, labels, bboxes)
elif ds == "objects365":
classes, images, bboxes = eval("init_{}".format(ds))(base_dir)
self.data2list[ds] = (images, bboxes)
else:
classes, images, labels = eval("init_{}".format(ds))(base_dir)
self.data2list[ds] = (images, labels)
self.data2classes[ds] = classes
num_images.append(len(images))
sample_rate = np.array(general_segdet_sample_rate)
self.sample_rate = sample_rate / sample_rate.sum()
if "cocostuff" in self.general_segdet_datas:
self.cocostuff_class2index = {
c: i for i, c in enumerate(self.data2classes["cocostuff"])
}
def __len__(self):
return self.samples_per_epoch
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
x = (x - self.pixel_mean) / self.pixel_std
# Pad
h, w = x.shape[-2:]
padh = self.img_size - h
padw = self.img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
def __getitem__(self, idx):
ds = np.random.choice(list(range(len(self.general_segdet_datas))), p=self.sample_rate)
ds = self.general_segdet_datas[ds]
if ds in ["paco_lvis"]:
class_map = self.data2classes[ds]
img_ids, coco_api = self.data2list[ds]
idx = random.randint(0, len(img_ids) - 1)
img_id = img_ids[idx]
image_info = coco_api.loadImgs([img_id])[0]
file_name = image_info["file_name"]
if ds == "pascal_part":
file_name = os.path.join(
"VOCdevkit", "VOC2010", "JPEGImages", file_name
)
image_path = os.path.join(self.base_dir, "vlpart", ds, file_name)
elif ds == "paco_lvis":
image_path = os.path.join(self.base_dir, "coco2017", file_name)
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# preprocess image for clip
image_clip = self.clip_image_processor.preprocess(
expand2square(Image.open(image_path).convert('RGB'), tuple(int(x*255) for x in self.clip_image_processor.image_mean)), return_tensors="pt"
)["pixel_values"][0]
original_size = image.shape[:2]
image = self.transform(images=image, return_tensors="pt")['pixel_values'][0]
resize = image.shape[:2]
annIds = coco_api.getAnnIds(imgIds=image_info["id"])
anns = coco_api.loadAnns(annIds)
anns_category2instances = dict()
for ann in anns:
category_id = ann['category_id']
if category_id not in anns_category2instances:
anns_category2instances[category_id] = []
anns_category2instances[category_id].append(ann)
if len(anns_category2instances) == 0:
return self.__getitem__(0)
if len(anns_category2instances) >= self.num_classes_per_sample:
sampled_anns = np.random.choice(
list(anns_category2instances.keys()), size=self.num_classes_per_sample, replace=False
).tolist()
else:
sampled_anns = list(anns_category2instances.keys())
sampled_classes = []
for category_id in sampled_anns:
sampled_cls = class_map[category_id]
if isinstance(sampled_cls, tuple):
obj, part = sampled_cls
if random.random() < 0.5:
name = obj + " " + part
else:
name = "the {} of the {}".format(part, obj)
else:
name = sampled_cls
name = name.replace('_', ' ')
sampled_classes.append(name)
elif ds in ["cocostuff"]:
image, labels, bboxes_all = self.data2list[ds]
idx = random.randint(0, len(image) - 1)
image_path = image[idx]
label_path = labels[idx]
bboxes = bboxes_all[idx]
label = Image.open(label_path)
label = np.array(label)
if ds == "ade20k":
label[label == 0] = 255
label -= 1
label[label == 254] = 255
elif ds == "cocostuff":
for c, i in self.cocostuff_class2index.items():
if "-" in c:
label[label == i] = 255
img = cv2.imread(image_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# preprocess image for clip
image_clip = self.clip_image_processor.preprocess(
expand2square(Image.open(image_path).convert('RGB'), tuple(int(x*255) for x in self.clip_image_processor.image_mean)), return_tensors="pt"
)["pixel_values"][0]
original_size = image.shape[:2]
image = self.transform(images=image, return_tensors="pt")['pixel_values'][0]
resize = image.shape[:2]
unique_label = np.unique(label).tolist()
if 255 in unique_label:
unique_label.remove(255)
if len(unique_label) == 0:
return self.__getitem__(0)
classes = [self.data2classes[ds][class_id] for class_id in unique_label]
if len(classes) >= self.num_classes_per_sample:
sampled_classes = np.random.choice(
classes, size=self.num_classes_per_sample, replace=False
).tolist()
else:
sampled_classes = classes
elif ds in ['objects365']:
image, bboxes_all = self.data2list[ds]
idx = random.randint(0, len(image) - 1)
image_path = image[idx]
bboxes = bboxes_all[idx]
img = cv2.imread(image_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# preprocess image for clip
image_clip = self.clip_image_processor.preprocess(
expand2square(Image.open(image_path).convert('RGB'), tuple(int(x*255) for x in self.clip_image_processor.image_mean)), return_tensors="pt"
)["pixel_values"][0]
original_size = image.shape[:2]
image = self.transform(images=image, return_tensors="pt")['pixel_values'][0]
resize = image.shape[:2]
unique_label = set()
for bbox_info in bboxes:
unique_label.add(bbox_info['category_id'])
unique_label = list(unique_label)
if len(unique_label) == 0:
return self.__getitem__(0)
classes = [self.data2classes[ds][class_id] for class_id in unique_label]
if len(classes) >= self.num_classes_per_sample:
sampled_classes = np.random.choice(
classes, size=self.num_classes_per_sample, replace=False
).tolist()
else:
sampled_classes = classes
questions = []
answers = []
class_ids = []
bboxes_labels = []
for i, sampled_cls in enumerate(sampled_classes):
text = sampled_cls
if ds in ['objects365']:
text = random.sample(text.split('/'), 1)[0]
assert len(text.split("||")) == 1
question_template = random.choice(self.short_question_list)
questions.append(question_template.format(class_name=text.lower()))
answers.append(random.choice(self.answer_list))
if ds in ["paco_lvis", "pascal_part"]:
category_id = sampled_anns[i]
cur_bboxes = [instance['bbox'] for instance in anns_category2instances[category_id]]
cur_bboxes = torch.tensor(cur_bboxes).view(-1, 4)
# xywh to x1y1x2y2
cur_bboxes[:, 2:] += cur_bboxes[:, :2]
cur_bboxes[:, 0::2].clamp_(min=0, max=original_size[1])
cur_bboxes[:, 1::2].clamp_(min=0, max=original_size[0])
keep = (cur_bboxes[:, 3] > cur_bboxes[:, 1]) & (cur_bboxes[:, 2] > cur_bboxes[:, 0])
cur_bboxes = cur_bboxes[keep]
cur_bboxes = box_xyxy_to_cxcywh(cur_bboxes)
cur_bboxes = cur_bboxes / torch.tensor([original_size[1], original_size[0], original_size[1], original_size[0]], dtype=torch.float32)
if len(cur_bboxes) == 0:
return self.__getitem__(0)
bboxes_labels.append(cur_bboxes)
continue
class_id = self.data2classes[ds].tolist().index(sampled_cls)
class_ids.append(class_id)
if ds in ['objects365']:
cur_bboxes = [bbox['bbox'] for bbox in bboxes if bbox['category_id'] == class_id]
else:
cur_bboxes = [bbox['bbox'] for bbox in bboxes if bbox['category_id']-1 == class_id]
cur_bboxes = cur_bboxes[:100]
assert len(cur_bboxes) > 0
cur_bboxes = torch.tensor(cur_bboxes).view(-1, 4)
# xywh to x1y1x2y2
cur_bboxes[:, 2:] += cur_bboxes[:, :2]
cur_bboxes[:, 0::2].clamp_(min=0, max=original_size[1])
cur_bboxes[:, 1::2].clamp_(min=0, max=original_size[0])
keep = (cur_bboxes[:, 3] > cur_bboxes[:, 1]) & (cur_bboxes[:, 2] > cur_bboxes[:, 0])
cur_bboxes = cur_bboxes[keep]
cur_bboxes = box_xyxy_to_cxcywh(cur_bboxes)
cur_bboxes = cur_bboxes / torch.tensor([original_size[1], original_size[0], original_size[1], original_size[0]], dtype=torch.float32)
if len(cur_bboxes) == 0:
return self.__getitem__(0)
bboxes_labels.append(cur_bboxes)
bboxes_valid = [1]*len(bboxes_labels)
masks_valid = [1]*len(bboxes_labels)
conversations = []
conv = conversation_lib.default_conversation.copy()
i = 0
while i < len(questions):
conv.messages = []
conv.append_message(conv.roles[0], questions[i])
conv.append_message(conv.roles[1], answers[i])
conversations.append(conv.get_prompt())
i += 1
if ds in ["paco_lvis", "pascal_part"]:
masks = []
for category_id in sampled_anns:
try:
cur_anns = anns_category2instances[category_id]
cur_mask = None
for ann in cur_anns:
if cur_mask is None:
cur_mask = coco_api.annToMask(ann)
else:
cur_mask = cur_mask | coco_api.annToMask(ann)
assert cur_mask is not None
masks.append(cur_mask)
except Exception as e:
print(e)
return self.__getitem__(0)
masks = np.stack(masks, axis=0)
masks = torch.from_numpy(masks)
label = torch.ones(masks.shape[1], masks.shape[2]) * self.ignore_label
elif ds in ['objects365']:
masks = torch.rand(len(bboxes_labels), *original_size)
label = torch.ones(original_size) * self.ignore_label
masks_valid = [0]*len(bboxes_labels)
else:
label = torch.from_numpy(label).long()
masks = []
for class_id in class_ids:
masks.append(label == class_id)
masks = torch.stack(masks, dim=0)
return (
image_path,
image,
image_clip,
conversations,
masks,
label,
bboxes_labels,
bboxes_valid,
masks_valid,
resize,
questions,
sampled_classes,
)