Spaces:
Runtime error
Runtime error
from abc import ABC, abstractmethod | |
import torch | |
from LLaVA.llava.model.multimodal_encoder.builder import build_vision_tower | |
from LLaVA.llava.model.multimodal_projector.builder import build_vision_projector | |
from LLaVA.llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, OBJECT_TOKEN_INDEX | |
class LlavaSearchMetaModel: | |
def __init__(self, config): | |
super(LlavaSearchMetaModel, self).__init__(config) | |
if hasattr(config, "mm_vision_tower"): | |
self.vision_tower = build_vision_tower(config, delay_load=True) | |
self.mm_projector = build_vision_projector(config) | |
self.mm_projector_object = build_vision_projector(config, object_projector=True) | |
def get_vision_tower(self): | |
vision_tower = getattr(self, 'vision_tower', None) | |
if type(vision_tower) is list: | |
vision_tower = vision_tower[0] | |
return vision_tower | |
def initialize_vision_modules(self, model_args, fsdp=None): | |
vision_tower = model_args.vision_tower | |
mm_vision_select_layer = model_args.mm_vision_select_layer | |
mm_vision_select_feature = model_args.mm_vision_select_feature | |
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter | |
pretrain_mm_perceiver_adapter = model_args.pretrain_mm_perceiver_adapter | |
self.config.mm_vision_tower = vision_tower | |
if self.get_vision_tower() is None: | |
vision_tower = build_vision_tower(model_args) | |
if fsdp is not None and len(fsdp) > 0: | |
self.vision_tower = [vision_tower] | |
else: | |
self.vision_tower = vision_tower | |
else: | |
if fsdp is not None and len(fsdp) > 0: | |
vision_tower = self.vision_tower[0] | |
else: | |
vision_tower = self.vision_tower | |
vision_tower.load_model() | |
self.config.use_mm_proj = True | |
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') | |
self.config.object_mm_projector_type = getattr(model_args, 'object_mm_projector_type', 'perceiver') | |
self.config.mm_hidden_size = vision_tower.hidden_size | |
self.config.mm_vision_select_layer = mm_vision_select_layer | |
self.config.mm_vision_select_feature = mm_vision_select_feature | |
if getattr(self, 'mm_projector', None) is None: | |
self.mm_projector = build_vision_projector(self.config) | |
self.mm_projector_object = build_vision_projector(self.config, object_projector=True) | |
if pretrain_mm_mlp_adapter is not None: | |
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') | |
def get_w(weights, keyword): | |
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} | |
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) | |
if pretrain_mm_perceiver_adapter is not None: | |
mm_projector_weights = torch.load(pretrain_mm_perceiver_adapter, map_location='cpu') | |
def get_w(weights, keyword): | |
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} | |
self.mm_projector_object.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) | |
class LlavaSearchMetaForCausalLM(ABC): | |
def get_model(self): | |
pass | |
def get_vision_tower(self): | |
return self.get_model().get_vision_tower() | |
def encode_images(self, images): | |
image_features = self.get_model().get_vision_tower()(images) | |
image_features_long = self.get_model().mm_projector(image_features) | |
image_features_short = self.get_model().mm_projector_object(image_features) | |
return image_features_long, image_features_short | |
def project_features(self, object_features): | |
object_features = self.get_model().get_vision_tower()(object_features) | |
image_features_long = self.get_model().mm_projector(object_features) | |
object_features_short = self.get_model().mm_projector_object(object_features) | |
return image_features_long, object_features_short | |
def prepare_inputs_labels_for_multimodal( | |
self, input_ids, attention_mask, past_key_values, labels, images, object_features, images_long=None, objects_long=None | |
): | |
vision_tower = self.get_vision_tower() | |
if vision_tower is None or images is None or input_ids.shape[1] == 1: | |
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: | |
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) | |
return input_ids, attention_mask, past_key_values, None, labels | |
if type(images) is list or images.ndim == 5: | |
concat_images = torch.cat([image for image in images], dim=0) | |
image_features = self.encode_images(concat_images) | |
split_sizes = [image.shape[0] for image in images] | |
image_features = torch.split(image_features, split_sizes, dim=0) | |
image_features = [x.flatten(0, 1) for x in image_features] | |
else: | |
image_features_long, image_features_short = self.encode_images(images) | |
if object_features is not None and len(object_features) > 0: | |
projected_object_features_long, projected_object_features_short = self.project_features(object_features) | |
new_input_embeds = [] | |
new_labels = [] if labels is not None else None | |
new_attention_mask = [] if attention_mask is not None else None | |
cur_image_idx = 0 | |
cur_object_idx = 0 | |
for batch_idx, cur_input_ids in enumerate(input_ids): | |
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: | |
# multimodal LLM, but the current sample is not multimodal | |
half_len = cur_input_ids.shape[0] // 2 | |
cur_object_features = projected_object_features_short[cur_object_idx] | |
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) | |
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) | |
cat_list = [cur_input_embeds_1, image_features_short[cur_image_idx][0:0], image_features_long[cur_image_idx][0:0]] | |
for _ in range(3): | |
cat_list.extend([projected_object_features_short[cur_object_idx][0:0], projected_object_features_long[cur_object_idx][0:0]]) | |
cur_object_idx += 1 | |
cat_list.append(cur_input_embeds_2) | |
cur_input_embeds = torch.cat(cat_list, dim=0) | |
new_input_embeds.append(cur_input_embeds) | |
if labels is not None: | |
new_labels.append(labels[batch_idx]) | |
cur_image_idx += 1 | |
new_attention_mask.append(attention_mask[batch_idx]) | |
continue | |
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] | |
cur_new_input_embeds = [] | |
if labels is not None: | |
cur_labels = labels[batch_idx] | |
cur_new_labels = [] | |
assert cur_labels.shape == cur_input_ids.shape | |
if attention_mask is not None: | |
cur_attention_mask = attention_mask[batch_idx] | |
cur_new_attention_mask = [] | |
assert cur_attention_mask.shape == cur_input_ids.shape | |
while image_token_indices.numel() > 0: | |
if images_long is None or images_long[cur_image_idx]: | |
cur_image_features = torch.cat([image_features_short[cur_image_idx][0:0], image_features_long[cur_image_idx]]) | |
else: | |
cur_image_features = torch.cat([image_features_short[cur_image_idx], image_features_long[cur_image_idx][0:0]]) | |
image_token_start = image_token_indices[0] | |
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach()) | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start])) | |
cur_new_input_embeds.append(cur_image_features) | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2])) | |
if labels is not None: | |
cur_new_labels.append(cur_labels[:image_token_start]) | |
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) | |
cur_new_labels.append(cur_labels[image_token_start:image_token_start+1]) | |
cur_labels = cur_labels[image_token_start+2:] | |
if attention_mask is not None: | |
cur_new_attention_mask.append(cur_attention_mask[:image_token_start]) | |
if cur_attention_mask[image_token_start]: | |
cur_new_attention_mask.append(torch.full((cur_image_features.shape[0],), True, device=attention_mask.device, dtype=attention_mask.dtype)) | |
else: | |
cur_new_attention_mask.append(torch.full((cur_image_features.shape[0],), False, device=attention_mask.device, dtype=attention_mask.dtype)) | |
cur_new_attention_mask.append(cur_attention_mask[image_token_start:image_token_start+1]) | |
cur_attention_mask = cur_attention_mask[image_token_start+2:] | |
else: | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) | |
cur_new_input_embeds.append(cur_image_features) | |
if labels is not None: | |
cur_new_labels.append(cur_labels[:image_token_start]) | |
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) | |
cur_labels = cur_labels[image_token_start+1:] | |
if attention_mask is not None: | |
cur_new_attention_mask.append(cur_attention_mask[:image_token_start]) | |
if cur_attention_mask[image_token_start]: | |
cur_new_attention_mask.append(torch.full((cur_image_features.shape[0],), True, device=attention_mask.device, dtype=attention_mask.dtype)) | |
else: | |
cur_new_attention_mask.append(torch.full((cur_image_features.shape[0],), False, device=attention_mask.device, dtype=attention_mask.dtype)) | |
cur_attention_mask = cur_attention_mask[image_token_start+1:] | |
cur_image_idx += 1 | |
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): | |
cur_input_ids = cur_input_ids[image_token_start+2:] | |
else: | |
cur_input_ids = cur_input_ids[image_token_start+1:] | |
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] | |
object_token_indices = torch.where(cur_input_ids == OBJECT_TOKEN_INDEX)[0] | |
cur_object_num = object_token_indices.numel() | |
while object_token_indices.numel() > 0: | |
if objects_long is None or not objects_long[cur_object_idx]: | |
cur_object_features = torch.cat([projected_object_features_short[cur_object_idx], projected_object_features_long[cur_object_idx][0:0]]) | |
else: | |
cur_object_features = torch.cat([projected_object_features_short[cur_object_idx][0:0],projected_object_features_long[cur_object_idx]]) | |
object_token_start = object_token_indices[0] | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:object_token_start])) | |
cur_new_input_embeds.append(cur_object_features) | |
if labels is not None: | |
cur_new_labels.append(cur_labels[:object_token_start]) | |
cur_new_labels.append(torch.full((cur_object_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) | |
cur_labels = cur_labels[object_token_start+1:] | |
if attention_mask is not None: | |
cur_new_attention_mask.append(cur_attention_mask[:object_token_start]) | |
if cur_attention_mask[object_token_start]: | |
cur_new_attention_mask.append(torch.full((cur_object_features.shape[0],), True, device=attention_mask.device, dtype=attention_mask.dtype)) | |
else: | |
cur_new_attention_mask.append(torch.full((cur_object_features.shape[0],), False, device=attention_mask.device, dtype=attention_mask.dtype)) | |
cur_attention_mask = cur_attention_mask[object_token_start+1:] | |
cur_object_idx += 1 | |
cur_input_ids = cur_input_ids[object_token_start+1:] | |
object_token_indices = torch.where(cur_input_ids == OBJECT_TOKEN_INDEX)[0] | |
if cur_input_ids.numel() > 0: | |
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach()) | |
else: | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) | |
if labels is not None: | |
cur_new_labels.append(cur_labels) | |
if attention_mask is not None: | |
cur_new_attention_mask.append(cur_attention_mask) | |
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] | |
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) | |
new_input_embeds.append(cur_new_input_embeds) | |
if labels is not None: | |
cur_new_labels = torch.cat(cur_new_labels, dim=0) | |
new_labels.append(cur_new_labels) | |
if attention_mask is not None: | |
cur_new_attention_mask = torch.cat(cur_new_attention_mask, dim=0) | |
new_attention_mask.append(cur_new_attention_mask) | |
need_padding = False | |
for i in range(len(new_input_embeds)): | |
for j in range(i+1, len(new_input_embeds)): | |
if new_input_embeds[i].shape != new_input_embeds[j].shape: | |
need_padding = True | |
break | |
if need_padding: | |
break | |
if need_padding: | |
max_len = max(x.shape[0] for x in new_input_embeds) | |
new_input_embeds_align = [] | |
for cur_new_embed in new_input_embeds: | |
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) | |
new_input_embeds_align.append(cur_new_embed) | |
new_input_embeds = torch.stack(new_input_embeds_align, dim=0) | |
if labels is not None: | |
new_labels_align = [] | |
for cur_new_label in new_labels: | |
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) | |
new_labels_align.append(cur_new_label) | |
new_labels = torch.stack(new_labels_align, dim=0) | |
if attention_mask is not None: | |
new_attention_mask_align = [] | |
for cur_new_attention_mask in new_attention_mask: | |
new_attn_mask_pad_right = torch.full((max_len - cur_new_attention_mask.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) | |
cur_new_attention_mask = torch.cat((cur_new_attention_mask, new_attn_mask_pad_right), dim=0) | |
new_attention_mask.append(cur_new_attention_mask) | |
attention_mask = torch.stack(new_attention_mask, dim=0) | |
assert attention_mask.shape == new_labels.shape | |
else: | |
new_input_embeds = torch.stack(new_input_embeds, dim=0) | |
if labels is not None: | |
new_labels = torch.stack(new_labels, dim=0) | |
if new_attention_mask is not None and len(new_attention_mask): | |
new_attention_mask = torch.stack(new_attention_mask, dim=0) | |
attention_mask = new_attention_mask | |
assert attention_mask.shape == new_input_embeds.shape[:2] | |
return None, attention_mask, past_key_values, new_input_embeds, new_labels | |
def initialize_vision_tokenizer(self, model_args, tokenizer): | |
if model_args.mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if model_args.mm_use_im_start_end: | |
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = self.get_input_embeddings().weight.data | |
output_embeddings = self.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = True | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |
if model_args.pretrain_mm_mlp_adapter: | |
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') | |
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] | |
assert num_new_tokens == 2 | |
if input_embeddings.shape == embed_tokens_weight.shape: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] | |
elif embed_tokens_weight.shape[0] == num_new_tokens: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight | |
else: | |
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") | |
elif model_args.mm_use_im_patch_token: | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = False | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |