Spaces:
Runtime error
Runtime error
import json | |
import os | |
import random | |
import copy | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from transformers import CLIPImageProcessor | |
from transformers import OwlViTProcessor | |
from VisualSearch.model.llava import conversation as conversation_lib | |
from VisualSearch.utils.utils import box_xyxy_to_cxcywh, expand2square | |
from VisualSearch.utils.utils import DEFAULT_IMAGE_TOKEN | |
def preprocess_multimodal(source, mm_use_im_start_end): | |
for sentence in source: | |
if DEFAULT_IMAGE_TOKEN in sentence["value"]: | |
sentence["value"] = ( | |
sentence["value"].replace(DEFAULT_IMAGE_TOKEN, "").strip() | |
) | |
sentence["value"] = DEFAULT_IMAGE_TOKEN + "[LOC]"+"\n" + sentence["value"] | |
# sentence["value"] = DEFAULT_IMAGE_TOKEN + "\n" + sentence["value"] | |
sentence["value"] = sentence["value"].strip() | |
if "mmtag" in conversation_lib.default_conversation.version: | |
sentence["value"] = sentence["value"].replace( | |
DEFAULT_IMAGE_TOKEN, "<Image>" + DEFAULT_IMAGE_TOKEN + "</Image>" | |
) | |
return source | |
class VQADataset(torch.utils.data.Dataset): | |
pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1) | |
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1) | |
img_size = 1024 | |
ignore_label = 255 | |
def __init__( | |
self, | |
base_image_dir, | |
tokenizer, | |
vision_tower, | |
samples_per_epoch=500 * 8 * 2 * 10, | |
precision: str = "fp32", | |
num_classes_per_sample: int = 3, | |
exclude_val=False, | |
vqa_data="possible_locations_conv_86k||llava_instruct_150k", | |
vqa_sample_rate=[2,1], | |
): | |
self.exclude_val = exclude_val | |
self.samples_per_epoch = samples_per_epoch | |
self.num_classes_per_sample = num_classes_per_sample | |
self.base_image_dir = base_image_dir | |
self.tokenizer = tokenizer | |
self.precision = precision | |
self.transform = OwlViTProcessor.from_pretrained("google/owlvit-base-patch16") | |
self.clip_image_processor = CLIPImageProcessor.from_pretrained(vision_tower) | |
DATA_DIR = os.path.join(base_image_dir, "vsm_vqa_data") | |
self.vqa_image_root = os.path.join(base_image_dir, "coco2017/train2017") | |
vqa_datas = vqa_data.split("||") | |
self.vqa_datas = [] | |
for data in vqa_datas: | |
with open(os.path.join(DATA_DIR, "{}.json".format(data))) as f: | |
data = json.load(f) | |
self.vqa_datas.append(data) | |
sample_rate = np.array(vqa_sample_rate) | |
self.sample_rate = sample_rate / sample_rate.sum() | |
def __len__(self): | |
return self.samples_per_epoch | |
def preprocess(self, x: torch.Tensor) -> torch.Tensor: | |
"""Normalize pixel values and pad to a square input.""" | |
# Normalize colors | |
x = (x - self.pixel_mean) / self.pixel_std | |
# Pad | |
h, w = x.shape[-2:] | |
padh = self.img_size - h | |
padw = self.img_size - w | |
x = F.pad(x, (0, padw, 0, padh)) | |
return x | |
def __getitem__(self, idx): | |
ds = np.random.choice(list(range(len(self.vqa_datas))), p=self.sample_rate) | |
ds = self.vqa_datas[ds] | |
idx = random.randint(0, len(ds) - 1) | |
item = ds[idx] | |
image_path = os.path.join(self.vqa_image_root, item["image"]) | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
ori_size = image.shape[:2] | |
image_clip = self.clip_image_processor.preprocess( | |
expand2square(Image.open(image_path).convert('RGB'), tuple(int(x*255) for x in self.clip_image_processor.image_mean)), return_tensors="pt")["pixel_values"][0] | |
image = self.transform(images=image, return_tensors="pt")['pixel_values'][0] | |
resize = image.shape[:2] | |
conv = conversation_lib.default_conversation.copy() | |
source = item["conversations"] | |
source = preprocess_multimodal( | |
copy.deepcopy(source), | |
mm_use_im_start_end=conv.sep_style == conversation_lib.SeparatorStyle.TWO, | |
) | |
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
conversations = [] | |
if roles[source[0]["from"]] != conv.roles[0]: | |
# Skip the first one if it is not from human | |
source = source[1:] | |
conv.messages = [] | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
assert role == conv.roles[j % 2], f"{j}" | |
conv.append_message(role, sentence["value"]) | |
conversations.append(conv.get_prompt()) | |
questions = conversations | |
sampled_classes = conversations | |
masks = torch.rand(1, *ori_size) | |
label = torch.ones(ori_size) * self.ignore_label | |
bboxes_labels = [torch.tensor([[0.5,0.5,1.0,1.0]])] | |
bboxes_valid = [0] | |
masks_valid = [0] | |
return ( | |
image_path, | |
image, | |
image_clip, | |
conversations, | |
masks, | |
label, | |
bboxes_labels, | |
bboxes_valid, | |
masks_valid, | |
resize, | |
questions, | |
sampled_classes, | |
) | |