Spaces:
Runtime error
Runtime error
craftgamesnetwork
commited on
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from io import BytesIO
|
3 |
+
from flask import Flask, request, jsonify
|
4 |
+
from gradio_client import Client
|
5 |
+
from huggingface_hub import create_repo, upload_file
|
6 |
+
|
7 |
+
app = Flask(__name__)
|
8 |
+
|
9 |
+
@app.route('/run', methods=['POST'])
|
10 |
+
def run_model():
|
11 |
+
# Obter parâmetros da consulta da URL
|
12 |
+
endpoint = request.args.get('endpoint', default='https://pierroromeu-zbilatuca2testzz.hf.space')
|
13 |
+
prompt = request.args.get('prompt', default='Hello!!')
|
14 |
+
negative_prompt = request.args.get('negative_prompt', default='Hello!!')
|
15 |
+
prompt_2 = request.args.get('prompt_2', default='Hello!!')
|
16 |
+
negative_prompt_2 = request.args.get('negative_prompt_2', default='Hello!!')
|
17 |
+
use_negative_prompt = request.args.get('use_negative_prompt', type=bool, default=True)
|
18 |
+
use_prompt_2 = request.args.get('use_prompt_2', type=bool, default=True)
|
19 |
+
use_negative_prompt_2 = request.args.get('use_negative_prompt_2', type=bool, default=False)
|
20 |
+
seed = request.args.get('seed', type=int, default=0)
|
21 |
+
width = request.args.get('width', type=int, default=256)
|
22 |
+
height = request.args.get('height', type=int, default=256)
|
23 |
+
guidance_scale = request.args.get('guidance_scale', type=float, default=5.5)
|
24 |
+
num_inference_steps = request.args.get('num_inference_steps', type=int, default=50)
|
25 |
+
strength = request.args.get('strength', type=float, default=0.7)
|
26 |
+
use_vae_str = request.args.get('use_vae', default='false') # Obtém use_vae como string
|
27 |
+
use_vae = use_vae_str.lower() == 'true' # Converte para booleano
|
28 |
+
use_lora_str = request.args.get('use_lora', default='false') # Obtém use_lora como string
|
29 |
+
use_lora = use_lora_str.lower() == 'true' # Converte para booleano
|
30 |
+
use_img2img_str = request.args.get('use_img2img', default='false') # Obtém use_vae como string
|
31 |
+
use_img2img = use_img2img_str.lower() == 'true' # Converte para booleano
|
32 |
+
model = request.args.get('model', default='stabilityai/stable-diffusion-xl-base-1.0')
|
33 |
+
vaecall = request.args.get('vaecall', default='madebyollin/sdxl-vae-fp16-fix')
|
34 |
+
lora = request.args.get('lora', default='amazonaws-la/sdxl')
|
35 |
+
lora_scale = request.args.get('lora_scale', type=float, default=0.7)
|
36 |
+
url = request.args.get('url', default='https://example.com/image.png')
|
37 |
+
|
38 |
+
# Chamar a API Gradio
|
39 |
+
client = Client(endpoint)
|
40 |
+
result = client.predict(
|
41 |
+
prompt, negative_prompt, prompt_2, negative_prompt_2,
|
42 |
+
use_negative_prompt, use_prompt_2, use_negative_prompt_2,
|
43 |
+
seed, width, height,
|
44 |
+
guidance_scale,
|
45 |
+
num_inference_steps,
|
46 |
+
strength,
|
47 |
+
use_vae,
|
48 |
+
use_lora,
|
49 |
+
model,
|
50 |
+
vaecall,
|
51 |
+
lora,
|
52 |
+
lora_scale,
|
53 |
+
use_img2img,
|
54 |
+
url,
|
55 |
+
api_name="/run"
|
56 |
+
)
|
57 |
+
|
58 |
+
return jsonify(result)
|
59 |
+
|
60 |
+
@app.route('/predict', methods=['POST'])
|
61 |
+
def predict_gan():
|
62 |
+
# Obter parâmetros da consulta da URL
|
63 |
+
endpoint = request.args.get('endpoint', default='https://pierroromeu-gfpgan.hf.space/--replicas/dgwcd/')
|
64 |
+
hf_token = request.args.get('hf_token', default='')
|
65 |
+
filepath = request.args.get('filepath', default='')
|
66 |
+
version = request.args.get('version', default='v1.4')
|
67 |
+
rescaling_factor = request.args.get('rescaling_factor', type=float, default=2.0)
|
68 |
+
|
69 |
+
# Chamar a API Gradio
|
70 |
+
client = Client(endpoint, hf_token=hf_token)
|
71 |
+
result = client.predict(
|
72 |
+
filepath,
|
73 |
+
version,
|
74 |
+
rescaling_factor,
|
75 |
+
api_name="/predict"
|
76 |
+
)
|
77 |
+
|
78 |
+
return jsonify(result)
|
79 |
+
|
80 |
+
@app.route('/faceswapper', methods=['POST'])
|
81 |
+
def faceswapper():
|
82 |
+
# Obter parâmetros da consulta da URL
|
83 |
+
endpoint = request.args.get('endpoint', default='https://pierroromeu-faceswapper.hf.space/--replicas/u42x7/')
|
84 |
+
user_photo = request.args.get('user_photo', default='')
|
85 |
+
result_photo = request.args.get('result_photo', default='')
|
86 |
+
|
87 |
+
# Chamar a API Gradio
|
88 |
+
client = Client(endpoint)
|
89 |
+
result = client.predict(
|
90 |
+
user_photo,
|
91 |
+
result_photo,
|
92 |
+
api_name="/predict"
|
93 |
+
)
|
94 |
+
|
95 |
+
return jsonify(result)
|
96 |
+
|
97 |
+
@app.route('/train', methods=['POST'])
|
98 |
+
def answer():
|
99 |
+
# Obter parâmetros da consulta da URL
|
100 |
+
token = request.args.get('token', default='')
|
101 |
+
endpoint = request.args.get('endpoint', default='https://pierroromeu-gfpgan.hf.space/--replicas/dgwcd/')
|
102 |
+
dataset_id=request.args.get('dataset_id', default='')
|
103 |
+
output_model_folder_name=request.args.get('output_model_folder_name', default='')
|
104 |
+
concept_prompt=request.args.get('concept_prompt', default='')
|
105 |
+
max_training_steps=request.args.get('max_training_steps', type=int, default=0)
|
106 |
+
checkpoints_steps=request.args.get('checkpoints_steps', type=int, default=0)
|
107 |
+
remove_gpu_after_training_str = request.args.get('remove_gpu_after_training', default='false') # Obtém como string
|
108 |
+
remove_gpu_after_training = remove_gpu_after_training_str.lower() == 'true' # Converte para booleano
|
109 |
+
|
110 |
+
# Chamar a API Gradio
|
111 |
+
client = Client(endpoint, hf_token=token)
|
112 |
+
result = client.predict(
|
113 |
+
dataset_id,
|
114 |
+
output_model_folder_name,
|
115 |
+
concept_prompt,
|
116 |
+
max_training_steps,
|
117 |
+
checkpoints_steps,
|
118 |
+
remove_gpu_after_training,
|
119 |
+
api_name="/main"
|
120 |
+
)
|
121 |
+
|
122 |
+
return jsonify(result)
|
123 |
+
|
124 |
+
@app.route('/verify', methods=['GET'])
|
125 |
+
# ‘/’ URL is bound with hello_world() function.
|
126 |
+
def hello_world():
|
127 |
+
return jsonify('Check')
|
128 |
+
|
129 |
+
@app.route('/upload_model', methods=['POST'])
|
130 |
+
def upload_model():
|
131 |
+
# Parâmetros
|
132 |
+
file_name= request.args.get('file_name', default='')
|
133 |
+
repo = request.args.get('repo', default='')
|
134 |
+
url = request.args.get('url', default='')
|
135 |
+
token = request.args.get('token', default='')
|
136 |
+
|
137 |
+
try:
|
138 |
+
# Crie o repositório
|
139 |
+
repo_id = repo
|
140 |
+
create_repo(repo_id=repo_id, token=token)
|
141 |
+
|
142 |
+
# Faça o download do conteúdo da URL em memória
|
143 |
+
response = requests.get(url)
|
144 |
+
if response.status_code == 200:
|
145 |
+
# Obtenha o conteúdo do arquivo em bytes
|
146 |
+
file_content = response.content
|
147 |
+
# Crie um objeto de arquivo em memória
|
148 |
+
file_obj = BytesIO(file_content)
|
149 |
+
# Faça o upload do arquivo
|
150 |
+
upload_file(
|
151 |
+
path_or_fileobj=file_obj,
|
152 |
+
path_in_repo=file_name,
|
153 |
+
repo_id=repo_id,
|
154 |
+
token=token
|
155 |
+
)
|
156 |
+
|
157 |
+
# Mensagem de sucesso
|
158 |
+
return jsonify({"message": "Sucess"})
|
159 |
+
else:
|
160 |
+
return jsonify({"error": "Failed"}), 500
|
161 |
+
except Exception as e:
|
162 |
+
return jsonify({"error": str(e)}), 500
|
163 |
+
|
164 |
+
if __name__ == "__main__":
|
165 |
+
app.run(host="0.0.0.0", port=7860)
|