Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import numpy as np | |
import cv2 | |
import kiui | |
import trimesh | |
import torch | |
import rembg | |
from datetime import datetime | |
import subprocess | |
import gradio as gr | |
try: | |
# running on Hugging Face Spaces | |
import spaces | |
except ImportError: | |
# running locally, use a dummy space | |
class spaces: | |
class GPU: | |
def __init__(self, duration=60): | |
self.duration = duration | |
def __call__(self, func): | |
return func | |
from flow.model import Model | |
from flow.configs.schema import ModelConfig | |
from flow.utils import get_random_color, recenter_foreground | |
from vae.utils import postprocess_mesh | |
# download checkpoints | |
from huggingface_hub import hf_hub_download | |
flow_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="flow.pt") | |
vae_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="vae.pt") | |
TRIMESH_GLB_EXPORT = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).astype(np.float32) | |
MAX_SEED = np.iinfo(np.int32).max | |
bg_remover = rembg.new_session() | |
# model config | |
model_config = ModelConfig( | |
vae_conf="vae.configs.part_woenc", | |
vae_ckpt_path=vae_ckpt_path, | |
qknorm=True, | |
qknorm_type="RMSNorm", | |
use_pos_embed=False, | |
dino_model="dinov2_vitg14", | |
hidden_dim=1536, | |
flow_shift=3.0, | |
logitnorm_mean=1.0, | |
logitnorm_std=1.0, | |
latent_size=4096, | |
use_parts=True, | |
) | |
# instantiate model | |
model = Model(model_config).eval().cuda().bfloat16() | |
# load weight | |
ckpt_dict = torch.load(flow_ckpt_path, weights_only=True) | |
model.load_state_dict(ckpt_dict, strict=True) | |
# get random seed | |
def get_random_seed(randomize_seed, seed): | |
if randomize_seed: | |
seed = np.random.randint(0, MAX_SEED) | |
return seed | |
# process image | |
def process_image(image_path): | |
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) | |
if image.shape[-1] == 4: | |
image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA) | |
else: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# bg removal if there is no alpha channel | |
image = rembg.remove(image, session=bg_remover) # [H, W, 4] | |
mask = image[..., -1] > 0 | |
image = recenter_foreground(image, mask, border_ratio=0.1) | |
image = cv2.resize(image, (518, 518), interpolation=cv2.INTER_AREA) | |
return image | |
# process generation | |
def process_3d(input_image, num_steps=50, cfg_scale=7, grid_res=384, seed=42, simplify_mesh=False, target_num_faces=100000): | |
# seed | |
kiui.seed_everything(seed) | |
# output path | |
os.makedirs("output", exist_ok=True) | |
output_glb_path = f"output/partpacker_{datetime.now().strftime('%Y%m%d_%H%M%S')}.glb" | |
# input image (assume processed to RGBA uint8) | |
image = input_image.astype(np.float32) / 255.0 | |
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) # white background | |
image_tensor = torch.from_numpy(image).permute(2, 0, 1).contiguous().unsqueeze(0).float().cuda() | |
data = {"cond_images": image_tensor} | |
with torch.inference_mode(): | |
results = model(data, num_steps=num_steps, cfg_scale=cfg_scale) | |
latent = results["latent"] | |
# query mesh | |
data_part0 = {"latent": latent[:, : model.config.latent_size, :]} | |
data_part1 = {"latent": latent[:, model.config.latent_size :, :]} | |
with torch.inference_mode(): | |
results_part0 = model.vae(data_part0, resolution=grid_res) | |
results_part1 = model.vae(data_part1, resolution=grid_res) | |
if not simplify_mesh: | |
target_num_faces = -1 | |
vertices, faces = results_part0["meshes"][0] | |
mesh_part0 = trimesh.Trimesh(vertices, faces) | |
mesh_part0.vertices = mesh_part0.vertices @ TRIMESH_GLB_EXPORT.T | |
mesh_part0 = postprocess_mesh(mesh_part0, target_num_faces) | |
parts = mesh_part0.split(only_watertight=False) | |
vertices, faces = results_part1["meshes"][0] | |
mesh_part1 = trimesh.Trimesh(vertices, faces) | |
mesh_part1.vertices = mesh_part1.vertices @ TRIMESH_GLB_EXPORT.T | |
mesh_part1 = postprocess_mesh(mesh_part1, target_num_faces) | |
parts.extend(mesh_part1.split(only_watertight=False)) | |
# split connected components and assign different colors | |
for j, part in enumerate(parts): | |
# each component uses a random color | |
part.visual.vertex_colors = get_random_color(j, use_float=True) | |
mesh = trimesh.Scene(parts) | |
# export the whole mesh | |
mesh.export(output_glb_path) | |
return output_glb_path | |
# gradio UI | |
_TITLE = '''🎨 Image to 3D Model - Bring Your Images to Life!''' | |
_DESCRIPTION = ''' | |
<div style="text-align: center; margin-bottom: 20px;"> | |
<h3 style="color: #2e7d32;">✨ Transform 2D Images into Stunning 3D Models with One Click ✨</h3> | |
</div> | |
### 🚀 Key Features: | |
- **Smart Recognition**: Automatically identifies objects in images and generates corresponding 3D models | |
- **Part Separation**: Generated 3D models are automatically decomposed into multiple parts, each displayed in different colors | |
- **Background Removal**: Automatically removes image backgrounds to ensure only the main object is modeled | |
- **Universal Format**: Outputs standard GLB format, compatible with various 3D software | |
### 📖 How to Use: | |
1. **Upload Image**: Click the "Upload Image" area on the left to upload your picture (supports JPG, PNG, etc.) | |
2. **Adjust Settings** (Optional): | |
- Higher inference steps = better quality but slower (default 50 recommended) | |
- If unsatisfied with results, try different random seeds | |
3. **Click Generate**: Click the "Generate 3D Model" button and wait about 1-2 minutes | |
4. **View Results**: The 3D model will appear on the right, drag with mouse to rotate and view | |
### 💡 Tips for Best Results: | |
- Clear subjects with simple backgrounds work best | |
- Front-facing or 45-degree angle photos recommended | |
- If results aren't ideal, try adjusting the random seed and regenerating | |
- Check the example images below to see optimal input types | |
### 🎯 Use Cases: | |
- **Product Display**: Convert product images to 3D models for e-commerce | |
- **Creative Design**: Quickly obtain 3D prototypes for design reference | |
- **Game Development**: Generate initial 3D models for game assets | |
- **Educational Demos**: Convert flat diagrams to 3D for better spatial understanding | |
''' | |
block = gr.Blocks(title=_TITLE).queue() | |
with block: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown('# ' + _TITLE) | |
gr.Markdown(_DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): | |
# input image | |
input_image = gr.Image( | |
label="📷 Upload Image", | |
type="filepath" | |
) | |
seg_image = gr.Image( | |
label="🔍 Processed Image", | |
type="numpy", | |
interactive=False, | |
image_mode="RGBA" | |
) | |
with gr.Accordion("⚙️ Advanced Settings", open=False): | |
gr.Markdown(""" | |
### Parameter Guide: | |
- **Inference Steps**: More steps = higher quality but longer processing time | |
- **CFG Scale**: Controls generation accuracy, higher values stay closer to original | |
- **Grid Resolution**: 3D model detail level, higher = more detailed | |
- **Random Seed**: Same seed produces same results, useful for reproducing effects | |
- **Simplify Mesh**: Reduces model face count for lightweight applications | |
""") | |
# inference steps | |
num_steps = gr.Slider( | |
label="Inference Steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
info="Recommended: 30-70" | |
) | |
# cfg scale | |
cfg_scale = gr.Slider( | |
label="CFG Scale", | |
minimum=2, | |
maximum=10, | |
step=0.1, | |
value=7.0, | |
info="Recommended: 6-8" | |
) | |
# grid resolution | |
input_grid_res = gr.Slider( | |
label="Grid Resolution", | |
minimum=256, | |
maximum=512, | |
step=1, | |
value=384, | |
info="Recommended: 384" | |
) | |
# random seed | |
with gr.Row(): | |
randomize_seed = gr.Checkbox( | |
label="Randomize Seed", | |
value=True, | |
info="Use different seed each time" | |
) | |
seed = gr.Slider( | |
label="Seed Value", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0 | |
) | |
# simplify mesh | |
with gr.Row(): | |
simplify_mesh = gr.Checkbox( | |
label="Simplify Mesh", | |
value=False, | |
info="Reduce model complexity" | |
) | |
target_num_faces = gr.Slider( | |
label="Target Face Count", | |
minimum=10000, | |
maximum=1000000, | |
step=1000, | |
value=100000, | |
info="Lower count = simpler model" | |
) | |
# gen button | |
button_gen = gr.Button("🎯 Generate 3D Model", variant="primary", size="lg") | |
with gr.Column(scale=1): | |
# glb file | |
output_model = gr.Model3D( | |
label="🎭 3D Model Preview", | |
height=512 | |
) | |
gr.Markdown(""" | |
### 📌 Controls: | |
- 🖱️ **Left Click & Drag**: Rotate model | |
- 🖱️ **Right Click & Drag**: Pan view | |
- 🖱️ **Scroll Wheel**: Zoom in/out | |
- 📥 Click top-right corner to download GLB file | |
""") | |
with gr.Row(): | |
gr.Markdown("### 🖼️ Example Images (Click to Try):") | |
gr.Examples( | |
examples=[ | |
["examples/rabbit.png"], | |
["examples/robot.png"], | |
["examples/teapot.png"], | |
["examples/barrel.png"], | |
["examples/cactus.png"], | |
["examples/cyan_car.png"], | |
["examples/pickup.png"], | |
["examples/swivelchair.png"], | |
["examples/warhammer.png"], | |
], | |
fn=process_image, | |
inputs=[input_image], | |
outputs=[seg_image], | |
cache_examples=False | |
) | |
gr.Markdown(""" | |
--- | |
### ⚠️ Important Notes: | |
- Generation takes 1-2 minutes, please be patient | |
- Best results with clear, prominent subjects | |
- Generated models may need further optimization in professional 3D software | |
- Each colored section represents an independent 3D part | |
### 🤝 Technical Support: | |
Powered by NVIDIA PartPacker technology. For issues, please refer to the [official documentation](https://research.nvidia.com/labs/dir/partpacker/) | |
""") | |
button_gen.click( | |
process_image, inputs=[input_image], outputs=[seg_image] | |
).then( | |
get_random_seed, inputs=[randomize_seed, seed], outputs=[seed] | |
).then( | |
process_3d, inputs=[seg_image, num_steps, cfg_scale, input_grid_res, seed, simplify_mesh, target_num_faces], outputs=[output_model] | |
) | |
block.launch() |