PartPacker / app.py
cpuai's picture
Update app.py
ed7b6ad verified
import os
import numpy as np
import cv2
import kiui
import trimesh
import torch
import rembg
from datetime import datetime
import subprocess
import gradio as gr
try:
# running on Hugging Face Spaces
import spaces
except ImportError:
# running locally, use a dummy space
class spaces:
class GPU:
def __init__(self, duration=60):
self.duration = duration
def __call__(self, func):
return func
from flow.model import Model
from flow.configs.schema import ModelConfig
from flow.utils import get_random_color, recenter_foreground
from vae.utils import postprocess_mesh
# download checkpoints
from huggingface_hub import hf_hub_download
flow_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="flow.pt")
vae_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="vae.pt")
TRIMESH_GLB_EXPORT = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).astype(np.float32)
MAX_SEED = np.iinfo(np.int32).max
bg_remover = rembg.new_session()
# model config
model_config = ModelConfig(
vae_conf="vae.configs.part_woenc",
vae_ckpt_path=vae_ckpt_path,
qknorm=True,
qknorm_type="RMSNorm",
use_pos_embed=False,
dino_model="dinov2_vitg14",
hidden_dim=1536,
flow_shift=3.0,
logitnorm_mean=1.0,
logitnorm_std=1.0,
latent_size=4096,
use_parts=True,
)
# instantiate model
model = Model(model_config).eval().cuda().bfloat16()
# load weight
ckpt_dict = torch.load(flow_ckpt_path, weights_only=True)
model.load_state_dict(ckpt_dict, strict=True)
# get random seed
def get_random_seed(randomize_seed, seed):
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
return seed
# process image
@spaces.GPU(duration=10)
def process_image(image_path):
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
if image.shape[-1] == 4:
image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# bg removal if there is no alpha channel
image = rembg.remove(image, session=bg_remover) # [H, W, 4]
mask = image[..., -1] > 0
image = recenter_foreground(image, mask, border_ratio=0.1)
image = cv2.resize(image, (518, 518), interpolation=cv2.INTER_AREA)
return image
# process generation
@spaces.GPU(duration=90)
def process_3d(input_image, num_steps=50, cfg_scale=7, grid_res=384, seed=42, simplify_mesh=False, target_num_faces=100000):
# seed
kiui.seed_everything(seed)
# output path
os.makedirs("output", exist_ok=True)
output_glb_path = f"output/partpacker_{datetime.now().strftime('%Y%m%d_%H%M%S')}.glb"
# input image (assume processed to RGBA uint8)
image = input_image.astype(np.float32) / 255.0
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) # white background
image_tensor = torch.from_numpy(image).permute(2, 0, 1).contiguous().unsqueeze(0).float().cuda()
data = {"cond_images": image_tensor}
with torch.inference_mode():
results = model(data, num_steps=num_steps, cfg_scale=cfg_scale)
latent = results["latent"]
# query mesh
data_part0 = {"latent": latent[:, : model.config.latent_size, :]}
data_part1 = {"latent": latent[:, model.config.latent_size :, :]}
with torch.inference_mode():
results_part0 = model.vae(data_part0, resolution=grid_res)
results_part1 = model.vae(data_part1, resolution=grid_res)
if not simplify_mesh:
target_num_faces = -1
vertices, faces = results_part0["meshes"][0]
mesh_part0 = trimesh.Trimesh(vertices, faces)
mesh_part0.vertices = mesh_part0.vertices @ TRIMESH_GLB_EXPORT.T
mesh_part0 = postprocess_mesh(mesh_part0, target_num_faces)
parts = mesh_part0.split(only_watertight=False)
vertices, faces = results_part1["meshes"][0]
mesh_part1 = trimesh.Trimesh(vertices, faces)
mesh_part1.vertices = mesh_part1.vertices @ TRIMESH_GLB_EXPORT.T
mesh_part1 = postprocess_mesh(mesh_part1, target_num_faces)
parts.extend(mesh_part1.split(only_watertight=False))
# split connected components and assign different colors
for j, part in enumerate(parts):
# each component uses a random color
part.visual.vertex_colors = get_random_color(j, use_float=True)
mesh = trimesh.Scene(parts)
# export the whole mesh
mesh.export(output_glb_path)
return output_glb_path
# gradio UI
_TITLE = '''🎨 Image to 3D Model - Bring Your Images to Life!'''
_DESCRIPTION = '''
<div style="text-align: center; margin-bottom: 20px;">
<h3 style="color: #2e7d32;">✨ Transform 2D Images into Stunning 3D Models with One Click ✨</h3>
</div>
### 🚀 Key Features:
- **Smart Recognition**: Automatically identifies objects in images and generates corresponding 3D models
- **Part Separation**: Generated 3D models are automatically decomposed into multiple parts, each displayed in different colors
- **Background Removal**: Automatically removes image backgrounds to ensure only the main object is modeled
- **Universal Format**: Outputs standard GLB format, compatible with various 3D software
### 📖 How to Use:
1. **Upload Image**: Click the "Upload Image" area on the left to upload your picture (supports JPG, PNG, etc.)
2. **Adjust Settings** (Optional):
- Higher inference steps = better quality but slower (default 50 recommended)
- If unsatisfied with results, try different random seeds
3. **Click Generate**: Click the "Generate 3D Model" button and wait about 1-2 minutes
4. **View Results**: The 3D model will appear on the right, drag with mouse to rotate and view
### 💡 Tips for Best Results:
- Clear subjects with simple backgrounds work best
- Front-facing or 45-degree angle photos recommended
- If results aren't ideal, try adjusting the random seed and regenerating
- Check the example images below to see optimal input types
### 🎯 Use Cases:
- **Product Display**: Convert product images to 3D models for e-commerce
- **Creative Design**: Quickly obtain 3D prototypes for design reference
- **Game Development**: Generate initial 3D models for game assets
- **Educational Demos**: Convert flat diagrams to 3D for better spatial understanding
'''
block = gr.Blocks(title=_TITLE).queue()
with block:
with gr.Row():
with gr.Column():
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
# input image
input_image = gr.Image(
label="📷 Upload Image",
type="filepath"
)
seg_image = gr.Image(
label="🔍 Processed Image",
type="numpy",
interactive=False,
image_mode="RGBA"
)
with gr.Accordion("⚙️ Advanced Settings", open=False):
gr.Markdown("""
### Parameter Guide:
- **Inference Steps**: More steps = higher quality but longer processing time
- **CFG Scale**: Controls generation accuracy, higher values stay closer to original
- **Grid Resolution**: 3D model detail level, higher = more detailed
- **Random Seed**: Same seed produces same results, useful for reproducing effects
- **Simplify Mesh**: Reduces model face count for lightweight applications
""")
# inference steps
num_steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=100,
step=1,
value=50,
info="Recommended: 30-70"
)
# cfg scale
cfg_scale = gr.Slider(
label="CFG Scale",
minimum=2,
maximum=10,
step=0.1,
value=7.0,
info="Recommended: 6-8"
)
# grid resolution
input_grid_res = gr.Slider(
label="Grid Resolution",
minimum=256,
maximum=512,
step=1,
value=384,
info="Recommended: 384"
)
# random seed
with gr.Row():
randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=True,
info="Use different seed each time"
)
seed = gr.Slider(
label="Seed Value",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0
)
# simplify mesh
with gr.Row():
simplify_mesh = gr.Checkbox(
label="Simplify Mesh",
value=False,
info="Reduce model complexity"
)
target_num_faces = gr.Slider(
label="Target Face Count",
minimum=10000,
maximum=1000000,
step=1000,
value=100000,
info="Lower count = simpler model"
)
# gen button
button_gen = gr.Button("🎯 Generate 3D Model", variant="primary", size="lg")
with gr.Column(scale=1):
# glb file
output_model = gr.Model3D(
label="🎭 3D Model Preview",
height=512
)
gr.Markdown("""
### 📌 Controls:
- 🖱️ **Left Click & Drag**: Rotate model
- 🖱️ **Right Click & Drag**: Pan view
- 🖱️ **Scroll Wheel**: Zoom in/out
- 📥 Click top-right corner to download GLB file
""")
with gr.Row():
gr.Markdown("### 🖼️ Example Images (Click to Try):")
gr.Examples(
examples=[
["examples/rabbit.png"],
["examples/robot.png"],
["examples/teapot.png"],
["examples/barrel.png"],
["examples/cactus.png"],
["examples/cyan_car.png"],
["examples/pickup.png"],
["examples/swivelchair.png"],
["examples/warhammer.png"],
],
fn=process_image,
inputs=[input_image],
outputs=[seg_image],
cache_examples=False
)
gr.Markdown("""
---
### ⚠️ Important Notes:
- Generation takes 1-2 minutes, please be patient
- Best results with clear, prominent subjects
- Generated models may need further optimization in professional 3D software
- Each colored section represents an independent 3D part
### 🤝 Technical Support:
Powered by NVIDIA PartPacker technology. For issues, please refer to the [official documentation](https://research.nvidia.com/labs/dir/partpacker/)
""")
button_gen.click(
process_image, inputs=[input_image], outputs=[seg_image]
).then(
get_random_seed, inputs=[randomize_seed, seed], outputs=[seed]
).then(
process_3d, inputs=[seg_image, num_steps, cfg_scale, input_grid_res, seed, simplify_mesh, target_num_faces], outputs=[output_model]
)
block.launch()