Spaces:
Runtime error
Runtime error
from transformers import PretrainedConfig, LlavaConfig | |
from transformers import CONFIG_MAPPING | |
from transformers import AutoConfig | |
from tinyllava.utils.constants import * | |
class TinyLlavaConfig(PretrainedConfig): | |
model_type = "tinyllava" | |
def __init__( | |
self, | |
llm_model_name_or_path = '', | |
tokenizer_name_or_path = None, | |
vision_model_name_or_path = '', | |
vision_model_name_or_path2 = '', | |
connector_type = None, | |
text_config=None, | |
hidden_size=2048, | |
vocab_size=32000, | |
ignore_index=-100, | |
image_token_index=32000, | |
pad_token = None, | |
pad_token_id = None, | |
tokenizer_padding_side = 'right', | |
tokenizer_model_max_length = 2048, | |
vision_config = None, | |
vision_hidden_size = None, | |
vision_feature_layer = -2, | |
vision_feature_select_strategy = 'patch', | |
image_aspect_ratio = 'square', | |
resampler_hidden_size = None, | |
num_queries = None, | |
num_resampler_layers = None, | |
use_cache = False, | |
cache_dir = None, | |
tokenizer_use_fast = False, | |
tune_type_llm = 'frozen', | |
tune_type_connector = 'frozen', | |
tune_type_vision_tower = 'frozen', | |
tune_vision_tower_from_layer = -1, | |
**kwargs | |
): | |
self.llm_model_name_or_path = llm_model_name_or_path | |
self.tokenizer_name_or_path = tokenizer_name_or_path or self.llm_model_name_or_path | |
self.vision_model_name_or_path = vision_model_name_or_path | |
self.vision_model_name_or_path2 = vision_model_name_or_path2 | |
self.connector_type = connector_type | |
self.tune_type_llm = tune_type_llm | |
self.tune_type_connector = tune_type_connector | |
self.tune_type_vision_tower = tune_type_vision_tower | |
self.tune_vision_tower_from_layer = tune_vision_tower_from_layer | |
self.ignore_index = IGNORE_INDEX | |
self.image_token_index = IMAGE_TOKEN_INDEX | |
self.pad_token = pad_token | |
self.pad_token_id = pad_token_id | |
self.tokenizer_padding_side = tokenizer_padding_side | |
self.tokenizer_model_max_length = tokenizer_model_max_length | |
self.vision_feature_layer = vision_feature_layer | |
self.vision_feature_select_strategy = vision_feature_select_strategy | |
self.image_aspect_ratio = image_aspect_ratio | |
self.resampler_hidden_size = resampler_hidden_size | |
self.num_queries = num_queries | |
self.num_resampler_layers = num_resampler_layers | |
self.use_cache = use_cache | |
self.cache_dir = cache_dir | |
self.tokenizer_use_fast = tokenizer_use_fast | |
self._load_text_config(text_config) | |
self._load_vision_config(vision_config) | |
super().__init__(**kwargs) | |
def load_from_config(self, config): | |
self.llm_model_name_or_path = getattr(config, 'model_name_or_path', '') | |
self.tokenizer_name_or_path = getattr(config, 'tokenizer_name_or_path', None) or self.llm_model_name_or_path | |
self.vision_model_name_or_path = getattr(config, 'vision_tower', '') | |
self.vision_model_name_or_path2 = getattr(config, 'vision_tower2', '') | |
self.connector_type = getattr(config, 'connector_type', None) | |
self.vision_feature_layer = getattr(config, 'mm_vision_select_layer', -2) | |
self.vision_feature_select_strategy = getattr(config, 'mm_vision_select_feature', "patch") | |
self.image_aspect_ratio = getattr(config, 'image_aspect_ratio', "pad") | |
self.resampler_hidden_size = getattr(config, 'resampler_hidden_size', None) | |
self.num_queries = getattr(config, 'num_queries', None) | |
self.num_resampler_layers = getattr(config, 'num_resampler_layers', None) | |
self.cache_dir = getattr(config, 'cache_dir', None) | |
self.tokenizer_use_fast = getattr(config, 'tokenizer_use_fast', False) | |
self.tokenizer_model_max_length = getattr(config, 'model_max_length', 2048) | |
self.tokenizer_padding_side = getattr(config, 'tokenizer_padding_side', 'right') | |
self._load_text_config() | |
self._load_vision_config() | |
def _load_text_config(self, text_config=None): | |
if self.llm_model_name_or_path is None or self.llm_model_name_or_path == '': | |
self.text_config = CONFIG_MAPPING['llama']() | |
else: | |
self.text_config = AutoConfig.from_pretrained(self.llm_model_name_or_path, trust_remote_code=True) | |
if text_config is not None: | |
self.text_config = self.text_config.from_dict(text_config) | |
self.hidden_size = getattr(self.text_config, 'hidden_size', getattr(self.text_config, 'model_dim', None)) | |
self.vocab_size = getattr(self.text_config, 'vocab_size', None) | |
def _load_vision_config(self, vision_config=None): | |
if self.vision_model_name_or_path is None or self.vision_model_name_or_path == '': | |
self.vision_config = CONFIG_MAPPING['clip_vision_model']( | |
intermediate_size=4096, | |
hidden_size=1024, | |
patch_size=14, | |
image_size=336, | |
num_hidden_layers=24, | |
num_attention_heads=16, | |
vocab_size=32000, | |
projection_dim=768, | |
) | |
else: | |
self.vision_config = AutoConfig.from_pretrained(self.vision_model_name_or_path.split(':')[-1], trust_remote_code=True) | |
self.vision_config = getattr(self.vision_config, 'vision_config', self.vision_config) | |
if vision_config is not None: | |
self.vision_config = self.vision_config.from_dict(vision_config) | |
self.vision_config.model_name_or_path = self.vision_model_name_or_path.split(':')[-1] | |
self.vision_config.model_name_or_path2 = self.vision_model_name_or_path2.split(':')[-1] | |
self.vision_hidden_size = getattr(self.vision_config, 'hidden_size', None) | |