Camil Ziane
init space
74b17e0
raw
history blame
9.02 kB
import os
import torch
from ..utils import *
from ..model import *
class BaseTrainingRecipe:
def __init__(self, training_arguments):
self.training_arguments = training_arguments
def __call__(self, model):
model = self.training_model_converse(model)
model = self.tune_type_setting(model)
model.config.tune_type_connector = self.training_arguments.tune_type_connector
model.config.tune_type_vision_tower = self.training_arguments.tune_type_vision_tower
model.config.tune_type_llm = self.training_arguments.tune_type_llm
model.config.tune_vision_tower_from_layer = self.training_arguments.tune_vision_tower_from_layer
return model
def add_args(self, model_args):
llm_dtype = (torch.float16 if self.training_arguments.fp16 else (torch.bfloat16 if self.training_arguments.bf16 else torch.float32))
model_args['llm'].update(dict(torch_dtype=llm_dtype))
if self.training_arguments.pretrained_model_path is not None:
model_args['llm'].update(dict(pretrained_llm_path=os.path.join(self.training_arguments.pretrained_model_path, 'language_model')))
model_args['vision_tower'].update(dict(pretrained_vision_tower_path=os.path.join(self.training_arguments.pretrained_model_path, 'vision_tower')))
model_args['connector'].update(dict(pretrained_connector_path=os.path.join(self.training_arguments.pretrained_model_path, 'connector')))
return model_args
def tune_type_setting(self, model):
model = self._llm_tune_type_setting(model)
model = self._vision_tower_tune_type_setting(model)
model = self._connector_tune_type_setting(model)
return model
def _llm_tune_type_setting(self, model):
tune_type = self.training_arguments.tune_type_llm.lower()
assert tune_type in ('frozen', 'full', 'lora', 'qlora'), f'tune_type {tune_type} not supported in this training recipe!'
if tune_type == 'full':
model.language_model.requires_grad_(True)
elif tune_type == 'frozen':
model.language_model.requires_grad_(False)
self.support_gradient_checkpoint(model.language_model, self.training_arguments.gradient_checkpointing)
return model
def _vision_tower_tune_type_setting(self, model):
tune_type = self.training_arguments.tune_type_vision_tower.lower()
assert tune_type in ('frozen', 'full', 'partially-tune', 'lora', 'qlora'), f'tune_type {tune_type} not supported in this training recipe!'
if tune_type == 'full':
model.vision_tower.requires_grad_(True)
elif tune_type == 'frozen':
model.vision_tower.requires_grad_(False)
elif tune_type == 'partially-tune':
#--------------------------------------------
#--------------------------------------------
#TODO gradient checkpointing related???
#--------------------------------------------
#--------------------------------------------
from_layer = self.training_arguments.tune_vision_tower_from_layer
if from_layer > -1:
log(f'Tune the vision tower from layer {from_layer}!')
for n, p in model.vision_tower.named_parameters():
if 'vision_model.encoder.layers.' in n: #TODO not sure if other visual encoders contain 'vision_model.encoder.layers.'
layer_id = int(n.split('vision_model.encoder.layers.')[-1].split('.')[0])
if layer_id >= from_layer:
p.requires_grad = True
else:
p.requires_grad = False
else:
p.requires_grad = False
#self.support_gradient_checkpoint(model.vision_tower._vision_tower, self.training_arguments.gradient_checkpointing)
return model
def _connector_tune_type_setting(self, model):
tune_type = self.training_arguments.tune_type_connector.lower()
assert tune_type in ('frozen', 'full', 'lora', 'qlora'), f'tune_type {tune_type} not supported in this training recipe!'
if tune_type == 'full':
for p in model.connector.parameters():
p.requires_grad = True
elif tune_type == 'frozen':
for p in model.connector.parameters():
p.requires_grad = False
return model
def training_model_converse(self, model):
return model
def save(self, model, trainer):
model.config.use_cache = True
#save tokenizer
model.tokenizer.save_pretrained(self.training_arguments.output_dir)
#save entire model config
model.config.save_pretrained(self.training_arguments.output_dir, from_pt=True)
#save trainer
trainer.save_state()
if 'finetune' in self.training_arguments.output_dir and self.training_arguments.pretrained_model_path is not None: # for finetune stage
if trainer.deepspeed:
torch.cuda.synchronize()
trainer.save_model(self.training_arguments.output_dir)
return
#the followings are for pretrain stage
#save language model
language_model_state_dict = get_state_maybe_zero_3(model.language_model.named_parameters(), [''], False)
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
language_model_output_dir = os.path.join(self.training_arguments.output_dir, 'language_model')
os.makedirs(language_model_output_dir, exist_ok=True)
language_model_output_path = os.path.join(self.training_arguments.output_dir, 'language_model/pytorch_model.bin')
torch.save(language_model_state_dict, language_model_output_path)
model.config.text_config.save_pretrained(language_model_output_dir, from_pt=True)
#save vision tower
vision_tower_state_dict = get_state_maybe_zero_3(model.vision_tower._vision_tower.named_parameters(), [''], False)
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
vision_tower_output_dir = os.path.join(self.training_arguments.output_dir, 'vision_tower')
os.makedirs(vision_tower_output_dir, exist_ok=True)
vision_tower_output_path = os.path.join(self.training_arguments.output_dir, 'vision_tower/pytorch_model.bin')
torch.save(vision_tower_state_dict, vision_tower_output_path)
if isinstance(model.vision_tower._vision_tower, PreTrainedModel):
model.vision_tower._vision_tower.config.save_pretrained(vision_tower_output_dir, from_pt=True)
#save connector
connector_state_dict = get_state_maybe_zero_3(model.connector.named_parameters(), [''], False)
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
connector_output_dir = os.path.join(self.training_arguments.output_dir, 'connector')
os.makedirs(connector_output_dir, exist_ok=True)
connector_output_path = os.path.join(self.training_arguments.output_dir, 'connector/pytorch_model.bin')
torch.save(connector_state_dict, connector_output_path)
def load(self, model, model_args={}):
if not ('lora' in self.training_arguments.pretrained_model_path and os.path.exists(os.path.join(self.training_arguments.pretrained_model_path, 'adapter_config.json'))): # loading model for non-lora/non-qlora pretraining
model.load_llm(**model_args['llm'])
model.load_vision_tower(**model_args['vision_tower'])
model.load_connector(**model_args['connector'])
else:
model.language_model = model.language_model.from_pretrained(model_args['llm']['model_name_or_path'],attn_implementation='flash_attention_2',torch_dtype=model_args['llm']['torch_dtype'])
model.load_vision_tower(**model_args['vision_tower'])
model.load_connector(**model_args['connector'])
model.to(model_args['llm']['torch_dtype'])
from peft import PeftModel
print('Loading LoRA weights...')
model = PeftModel.from_pretrained(model, self.training_arguments.pretrained_model_path)
print('Merging LoRA weights...')
model = model.merge_and_unload()
print('Model is loaded...')
return model
def support_gradient_checkpoint(self, model, gradient_checkpointing=False):
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
if gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)