|
import os |
|
import torch |
|
|
|
from ..utils import * |
|
from ..model import * |
|
|
|
class BaseTrainingRecipe: |
|
|
|
def __init__(self, training_arguments): |
|
self.training_arguments = training_arguments |
|
|
|
|
|
def __call__(self, model): |
|
model = self.training_model_converse(model) |
|
model = self.tune_type_setting(model) |
|
model.config.tune_type_connector = self.training_arguments.tune_type_connector |
|
model.config.tune_type_vision_tower = self.training_arguments.tune_type_vision_tower |
|
model.config.tune_type_llm = self.training_arguments.tune_type_llm |
|
model.config.tune_vision_tower_from_layer = self.training_arguments.tune_vision_tower_from_layer |
|
return model |
|
|
|
|
|
def add_args(self, model_args): |
|
llm_dtype = (torch.float16 if self.training_arguments.fp16 else (torch.bfloat16 if self.training_arguments.bf16 else torch.float32)) |
|
model_args['llm'].update(dict(torch_dtype=llm_dtype)) |
|
if self.training_arguments.pretrained_model_path is not None: |
|
model_args['llm'].update(dict(pretrained_llm_path=os.path.join(self.training_arguments.pretrained_model_path, 'language_model'))) |
|
model_args['vision_tower'].update(dict(pretrained_vision_tower_path=os.path.join(self.training_arguments.pretrained_model_path, 'vision_tower'))) |
|
model_args['connector'].update(dict(pretrained_connector_path=os.path.join(self.training_arguments.pretrained_model_path, 'connector'))) |
|
return model_args |
|
|
|
def tune_type_setting(self, model): |
|
model = self._llm_tune_type_setting(model) |
|
model = self._vision_tower_tune_type_setting(model) |
|
model = self._connector_tune_type_setting(model) |
|
return model |
|
|
|
|
|
|
|
def _llm_tune_type_setting(self, model): |
|
tune_type = self.training_arguments.tune_type_llm.lower() |
|
assert tune_type in ('frozen', 'full', 'lora', 'qlora'), f'tune_type {tune_type} not supported in this training recipe!' |
|
if tune_type == 'full': |
|
model.language_model.requires_grad_(True) |
|
elif tune_type == 'frozen': |
|
model.language_model.requires_grad_(False) |
|
self.support_gradient_checkpoint(model.language_model, self.training_arguments.gradient_checkpointing) |
|
return model |
|
|
|
def _vision_tower_tune_type_setting(self, model): |
|
tune_type = self.training_arguments.tune_type_vision_tower.lower() |
|
assert tune_type in ('frozen', 'full', 'partially-tune', 'lora', 'qlora'), f'tune_type {tune_type} not supported in this training recipe!' |
|
if tune_type == 'full': |
|
model.vision_tower.requires_grad_(True) |
|
elif tune_type == 'frozen': |
|
model.vision_tower.requires_grad_(False) |
|
elif tune_type == 'partially-tune': |
|
|
|
|
|
|
|
|
|
|
|
from_layer = self.training_arguments.tune_vision_tower_from_layer |
|
if from_layer > -1: |
|
log(f'Tune the vision tower from layer {from_layer}!') |
|
for n, p in model.vision_tower.named_parameters(): |
|
if 'vision_model.encoder.layers.' in n: |
|
layer_id = int(n.split('vision_model.encoder.layers.')[-1].split('.')[0]) |
|
if layer_id >= from_layer: |
|
p.requires_grad = True |
|
else: |
|
p.requires_grad = False |
|
else: |
|
p.requires_grad = False |
|
|
|
return model |
|
|
|
def _connector_tune_type_setting(self, model): |
|
tune_type = self.training_arguments.tune_type_connector.lower() |
|
assert tune_type in ('frozen', 'full', 'lora', 'qlora'), f'tune_type {tune_type} not supported in this training recipe!' |
|
if tune_type == 'full': |
|
for p in model.connector.parameters(): |
|
p.requires_grad = True |
|
elif tune_type == 'frozen': |
|
for p in model.connector.parameters(): |
|
p.requires_grad = False |
|
return model |
|
|
|
|
|
|
|
def training_model_converse(self, model): |
|
return model |
|
|
|
|
|
def save(self, model, trainer): |
|
model.config.use_cache = True |
|
|
|
model.tokenizer.save_pretrained(self.training_arguments.output_dir) |
|
|
|
model.config.save_pretrained(self.training_arguments.output_dir, from_pt=True) |
|
|
|
trainer.save_state() |
|
|
|
if 'finetune' in self.training_arguments.output_dir and self.training_arguments.pretrained_model_path is not None: |
|
if trainer.deepspeed: |
|
torch.cuda.synchronize() |
|
trainer.save_model(self.training_arguments.output_dir) |
|
return |
|
|
|
|
|
|
|
language_model_state_dict = get_state_maybe_zero_3(model.language_model.named_parameters(), [''], False) |
|
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: |
|
language_model_output_dir = os.path.join(self.training_arguments.output_dir, 'language_model') |
|
os.makedirs(language_model_output_dir, exist_ok=True) |
|
language_model_output_path = os.path.join(self.training_arguments.output_dir, 'language_model/pytorch_model.bin') |
|
torch.save(language_model_state_dict, language_model_output_path) |
|
model.config.text_config.save_pretrained(language_model_output_dir, from_pt=True) |
|
|
|
vision_tower_state_dict = get_state_maybe_zero_3(model.vision_tower._vision_tower.named_parameters(), [''], False) |
|
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: |
|
vision_tower_output_dir = os.path.join(self.training_arguments.output_dir, 'vision_tower') |
|
os.makedirs(vision_tower_output_dir, exist_ok=True) |
|
vision_tower_output_path = os.path.join(self.training_arguments.output_dir, 'vision_tower/pytorch_model.bin') |
|
torch.save(vision_tower_state_dict, vision_tower_output_path) |
|
if isinstance(model.vision_tower._vision_tower, PreTrainedModel): |
|
model.vision_tower._vision_tower.config.save_pretrained(vision_tower_output_dir, from_pt=True) |
|
|
|
connector_state_dict = get_state_maybe_zero_3(model.connector.named_parameters(), [''], False) |
|
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: |
|
connector_output_dir = os.path.join(self.training_arguments.output_dir, 'connector') |
|
os.makedirs(connector_output_dir, exist_ok=True) |
|
connector_output_path = os.path.join(self.training_arguments.output_dir, 'connector/pytorch_model.bin') |
|
torch.save(connector_state_dict, connector_output_path) |
|
|
|
|
|
def load(self, model, model_args={}): |
|
if not ('lora' in self.training_arguments.pretrained_model_path and os.path.exists(os.path.join(self.training_arguments.pretrained_model_path, 'adapter_config.json'))): |
|
model.load_llm(**model_args['llm']) |
|
model.load_vision_tower(**model_args['vision_tower']) |
|
model.load_connector(**model_args['connector']) |
|
else: |
|
model.language_model = model.language_model.from_pretrained(model_args['llm']['model_name_or_path'],attn_implementation='flash_attention_2',torch_dtype=model_args['llm']['torch_dtype']) |
|
model.load_vision_tower(**model_args['vision_tower']) |
|
model.load_connector(**model_args['connector']) |
|
model.to(model_args['llm']['torch_dtype']) |
|
from peft import PeftModel |
|
print('Loading LoRA weights...') |
|
model = PeftModel.from_pretrained(model, self.training_arguments.pretrained_model_path) |
|
print('Merging LoRA weights...') |
|
model = model.merge_and_unload() |
|
print('Model is loaded...') |
|
|
|
return model |
|
|
|
|
|
def support_gradient_checkpoint(self, model, gradient_checkpointing=False): |
|
def make_inputs_require_grad(module, input, output): |
|
output.requires_grad_(True) |
|
if gradient_checkpointing: |
|
if hasattr(model, "enable_input_require_grads"): |
|
model.enable_input_require_grads() |
|
else: |
|
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) |
|
|
|
|
|
|
|
|