cowcow02's picture
Upload folder using huggingface_hub
480acdd
raw
history blame
4.87 kB
import re
from typing import List
import gradio as gr
import openai
import pinecone
from llama_index import VectorStoreIndex, StorageContext
from llama_index.chat_engine.types import ChatMode
from llama_index.llms import ChatMessage, MessageRole
from llama_index.vector_stores import PineconeVectorStore
from environments import OPENAI_API_KEY, PINECONE_API_KEY, PINECONE_INDEX, PASSWORD
openai.api_key = OPENAI_API_KEY
# openai.log = 'debug'
pinecone.init(
api_key=PINECONE_API_KEY,
environment='gcp-starter'
)
pinecone_index = pinecone.Index(PINECONE_INDEX)
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents([], storage_context=storage_context)
chat_engine = index.as_chat_engine(chat_mode=ChatMode.CONTEXT)
SYSTEM_PROMPT = '你是屯門地區康健中心的智能助理「點子」,你能解答關於屯門地區康健中心的服務內容。' \
''
CHAT_EXAMPLES = [
'你可以自我介紹嗎?',
'中心地址及服務時間',
'中心提供什麼服務?',
'中心有提供關於慢性疾病管理的服務嗎?',
'服務收費如何?',
]
def convert_to_chat_messages(history: List[List[str]]) -> List[ChatMessage]:
chat_messages = [ChatMessage(role=MessageRole.SYSTEM,
content=SYSTEM_PROMPT)]
for conversation in history:
for index, message in enumerate(conversation):
if not message:
continue
message = re.sub(r'\n \n\n---\n\n參考: \n.*$', '', message, flags=re.DOTALL)
role = MessageRole.USER if index % 2 == 0 else MessageRole.ASSISTANT
chat_message = ChatMessage(role=role, content=message.strip())
chat_messages.append(chat_message)
return chat_messages
def predict(message, history):
response = chat_engine.stream_chat(message, chat_history=convert_to_chat_messages(history))
partial_message = ""
for token in response.response_gen:
partial_message = partial_message + token
yield partial_message
urls = []
for source in response.source_nodes:
if source.score < 0.78:
continue
url = source.node.metadata.get('source')
if url:
urls.append(url)
if urls:
partial_message = partial_message + "\n&nbsp;\n\n---\n\n參考: \n"
for url in list(set(urls)):
partial_message = partial_message + f"- {url}\n"
yield partial_message
def predict_with_rag(message, history):
return predict(message, history)
# For 'With Prompt Wrapper' - Add system prompt, no Pinecone
def predict_with_prompt_wrapper(message, history):
yield from _invoke_chatgpt(history, message, is_include_system_prompt=True)
# For 'Vanilla ChatGPT' - No system prompt
def predict_vanilla_chatgpt(message, history):
yield from _invoke_chatgpt(history, message)
def _invoke_chatgpt(history, message, is_include_system_prompt=False):
history_openai_format = []
if is_include_system_prompt:
history_openai_format.append({"role": "system", "content": SYSTEM_PROMPT})
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append({"role": "assistant", "content": assistant})
history_openai_format.append({"role": "user", "content": message})
response = openai.ChatCompletion.create(
model='gpt-3.5-turbo',
messages=history_openai_format,
temperature=1.0,
stream=True
)
partial_message = ""
for chunk in response:
if len(chunk['choices'][0]['delta']) != 0:
partial_message = partial_message + chunk['choices'][0]['delta']['content']
yield partial_message
def vote(data: gr.LikeData):
if data.liked:
gr.Info("You up-voted this response: " + data.value)
else:
gr.Info("You down-voted this response: " + data.value)
chatbot = gr.Chatbot()
with gr.Blocks() as demo:
gr.Markdown("# 屯門地區康健中心智能助理「點子」")
with gr.Tab("With RAG (Retrieval Augmented Generation)"):
gr.ChatInterface(predict,
chatbot=chatbot,
examples=CHAT_EXAMPLES,
)
chatbot.like(vote, None, None) # Adding this line causes the like/dislike icons to appear in your chatbot
# with gr.Tab("With Initial System Prompt (a.k.a. prompt wrapper)"):
# gr.ChatInterface(predict_with_prompt_wrapper, examples=CHAT_EXAMPLES)
#
# with gr.Tab("Vanilla ChatGPT without modification"):
# gr.ChatInterface(predict_vanilla_chatgpt, examples=CHAT_EXAMPLES)
demo.queue()
demo.launch(share=False, auth=("demo", PASSWORD))