Spaces:
Runtime error
Runtime error
fix Detections class attribute imgs versus ims
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
from typing import List
|
2 |
import PIL.Image
|
3 |
import torch
|
4 |
-
import torchvision
|
5 |
import gradio as gr
|
6 |
|
7 |
article = "<p style='text-align: center'><a href='https://github.com/scoutant/yolo-person-gradio' target='_blank' class='footer'>Github Repo</a></p>"
|
@@ -15,14 +14,10 @@ def inference(img:PIL.Image.Image, threshold:float=0.6):
|
|
15 |
return None,0
|
16 |
images:List[PIL.Image.Image] = [ img ] # inference operates on a list of images
|
17 |
model.conf = threshold
|
18 |
-
# detections:torchvision.Detections = model(images, size=640)
|
19 |
detections = model(images, size=640)
|
20 |
-
print( "detections type:" , type(detections))
|
21 |
-
print( "attributes:" , dir(detections))
|
22 |
predictions:torch.Tensor = detections.pred[0] # the predictions for our single image
|
23 |
-
result_image=detections.imgs[0]
|
24 |
detections.render() # bounding boxes and labels added into image
|
25 |
-
# return detections.imgs[0], predictions.size(dim=0) # image and number of detections
|
26 |
return result_image, predictions.size(dim=0) # image and number of detections
|
27 |
|
28 |
gr.Interface(
|
|
|
1 |
from typing import List
|
2 |
import PIL.Image
|
3 |
import torch
|
|
|
4 |
import gradio as gr
|
5 |
|
6 |
article = "<p style='text-align: center'><a href='https://github.com/scoutant/yolo-person-gradio' target='_blank' class='footer'>Github Repo</a></p>"
|
|
|
14 |
return None,0
|
15 |
images:List[PIL.Image.Image] = [ img ] # inference operates on a list of images
|
16 |
model.conf = threshold
|
|
|
17 |
detections = model(images, size=640)
|
|
|
|
|
18 |
predictions:torch.Tensor = detections.pred[0] # the predictions for our single image
|
19 |
+
result_image = detections.ims[0] if hasattr(detections, "ims") else detections.imgs[0] # either model.common.Detections or torchvision.Detections
|
20 |
detections.render() # bounding boxes and labels added into image
|
|
|
21 |
return result_image, predictions.size(dim=0) # image and number of detections
|
22 |
|
23 |
gr.Interface(
|