Spaces:
Runtime error
Runtime error
import PIL.Image | |
import gradio as gr | |
import torch | |
import numpy as np | |
def detect_with_craft_text_detector(image: np.ndarray): | |
from craft_text_detector import Craft | |
craft = Craft(output_dir='output', crop_type="box", cuda=torch.cuda.is_available(), export_extra=True) | |
result = craft.detect_text( image) | |
annotated = PIL.Image.open('output/image_text_detection.png') # image with boxes displayed | |
return annotated, result['boxes'], is_signature(result['boxes_as_ratios']) | |
def detect_with_craft_hw_ocr(image: np.ndarray): | |
from craft_hw_ocr import OCR | |
ocr = OCR.load_models() | |
image, results = OCR.detection(image, ocr[2]) | |
bboxes, _ = OCR.recoginition(image, results, ocr[0], ocr[1]) | |
h,w,_=np.shape(image) # third dimension is color channel | |
annotated = OCR.visualize(image, results) | |
m=(np.asarray([w,h]))[np.newaxis,np.newaxis,:] | |
return annotated, bboxes, is_signature(bboxes/m) | |
def process(image:np.ndarray, lib:str='craft_text_detector'): | |
if image is None: | |
return None,'','' | |
annotated, boxes, signed = detect_with_craft_text_detector(image) if lib=='craft_text_detector' else detect_with_craft_hw_ocr( image) | |
return annotated, len(boxes), signed | |
dw=0.3 # width ratio | |
dh=0.25 | |
def is_nw(box): | |
""" | |
A box happen to be a 4-pixel list in order | |
1 -- 2 | |
4 -- 3 | |
""" | |
return box[2][0]<=dw and box[2][1]<= dh | |
def is_ne(box): | |
return box[3][0]>=1-dw and box[3][1]<= dh | |
def is_se(box): | |
return box[0][0]>=1-dw and box[0][1]>= 1-dh | |
def is_sw(box): | |
return box[1][0]<=dw and box[1][1]>= 1-dh | |
def is_corner(box)->bool: | |
""" @:returns true if the box is located in any corner """ | |
return is_nw(box) or is_ne(box) or is_se(box) or is_sw(box) | |
dhhf=0.2 # dh for header and footer | |
def is_footer(box)->bool: | |
""" true if for the 2 first points, y>0.8 """ | |
return box[0][1]>=1-dhhf and box[1][1]>=1-dhhf | |
def is_header(box)->bool: | |
""" true if for the 2 last points, y<0.2 """ | |
return box[2][1]<=dhhf and box[3][1]<=dhhf | |
# def is_signature(prediction_result) -> bool: | |
def is_signature(boxes) -> bool: | |
""" true if any of the boxes is at any corner, or header or footer """ | |
for box in boxes: | |
if box[1][0]-box[0][0]<0.05: # not large enough | |
continue | |
if is_corner(box) or is_header(box) or is_footer(box): | |
return True | |
return False | |
gr.Interface( | |
fn = process, | |
# inputs = [ gr.Image(label="Input"), gr.inputs.Radio(label='Model', choices=["craft_text_detector", "craft_hw_ocr"], default='craft_text_detector') ], | |
inputs = [ gr.Image(label="Input") ], | |
outputs = [ gr.Image(label="Output"), gr.Label(label="nb of text detections"), gr.Label(label="Has signature") ], | |
title="Detect signature in image", | |
description="Is the photo or image watermarked by a signature?", | |
examples=[['data/photologo-1-1.jpg'], ['data/times-square.jpg'], ['data/photologo-3.jpg']], | |
allow_flagging="never" | |
).launch(debug=True, enable_queue=True) |