Spaces:
Build error
Build error
| import gradio as gr | |
| import cv2 | |
| import torch | |
| import numpy as np | |
| from torchvision import transforms | |
| description = "Automatically remove the image background from a profile photo. Based on a [Space by eugenesiow](https://huggingface.co/spaces/eugenesiow/remove-bg)." | |
| def make_transparent_foreground(pic, mask): | |
| # split the image into channels | |
| b, g, r = cv2.split(np.array(pic).astype('uint8')) | |
| # add an alpha channel with and fill all with transparent pixels (max 255) | |
| a = np.ones(mask.shape, dtype='uint8') * 255 | |
| # merge the alpha channel back | |
| alpha_im = cv2.merge([b, g, r, a], 4) | |
| # create a transparent background | |
| bg = np.zeros(alpha_im.shape) | |
| # setup the new mask | |
| new_mask = np.stack([mask, mask, mask, mask], axis=2) | |
| # copy only the foreground color pixels from the original image where mask is set | |
| foreground = np.where(new_mask, alpha_im, bg).astype(np.uint8) | |
| return foreground | |
| def remove_background(input_image): | |
| preprocess = transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
| ]) | |
| input_tensor = preprocess(input_image) | |
| input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model | |
| # move the input and model to GPU for speed if available | |
| if torch.cuda.is_available(): | |
| input_batch = input_batch.to('cuda') | |
| model.to('cuda') | |
| with torch.no_grad(): | |
| output = model(input_batch)['out'][0] | |
| output_predictions = output.argmax(0) | |
| # create a binary (black and white) mask of the profile foreground | |
| mask = output_predictions.byte().cpu().numpy() | |
| background = np.zeros(mask.shape) | |
| bin_mask = np.where(mask, 255, background).astype(np.uint8) | |
| foreground = make_transparent_foreground(input_image, bin_mask) | |
| return foreground, bin_mask | |
| def inference(img): | |
| foreground, _ = remove_background(img) | |
| return foreground | |
| torch.hub.download_url_to_file('https://pbs.twimg.com/profile_images/691700243809718272/z7XZUARB_400x400.jpg', | |
| 'demis.jpg') | |
| torch.hub.download_url_to_file('https://hai.stanford.edu/sites/default/files/styles/person_medium/public/2020-03/hai_1512feifei.png?itok=INFuLABp', | |
| 'lifeifei.png') | |
| model = torch.hub.load('pytorch/vision:v0.6.0', 'deeplabv3_resnet101', pretrained=True) | |
| model.eval() | |
| gr.Interface( | |
| inference, | |
| gr.Image(type="pil", label="Input"), | |
| gr.Image(type="pil", label="Output"), | |
| description=description, | |
| examples=[['demis.jpg'], ['lifeifei.png']], | |
| enable_queue=True, | |
| css=".footer{display:none !important}" | |
| ).launch(debug=False) | |