Spaces:
Runtime error
Runtime error
import torch | |
from transformers import pipeline, VitsModel, VitsTokenizer | |
import numpy as np | |
os.system("pip install git+https://github.com/openai/whisper.git") | |
import gradio as gr | |
import whisper | |
model = whisper.load_model("small") | |
def inference(audio): | |
audio = whisper.load_audio(audio) | |
audio = whisper.pad_or_trim(audio) | |
mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
_, probs = model.detect_language(mel) | |
options = whisper.DecodingOptions(fp16 = False) | |
result = whisper.decode(model, mel, options) | |
print(result.text) | |
return result.text | |
# Load Whisper-small | |
pipe = pipeline("automatic-speech-recognition", | |
model="openai/whisper-small", | |
device=device | |
) | |
# Load the model checkpoint and tokenizer | |
#model = VitsModel.from_pretrained("Matthijs/mms-tts-fra") | |
#tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra") | |
model = VitsModel.from_pretrained("facebook/mms-tts-fra") | |
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra") | |
# Define a function to translate an audio, in english here | |
def translate(audio): | |
return inference(audio) | |
outputs = pipe(audio, max_new_tokens=256, | |
generate_kwargs={"task": "transcribe", "language": "english"}) | |
return outputs["text"] | |
# Define function to generate the waveform output | |
def synthesise(text): | |
inputs = tokenizer(text, return_tensors="pt") | |
input_ids = inputs["input_ids"] | |
with torch.no_grad(): | |
outputs = model(input_ids) | |
return outputs.audio[0] | |
# Define the pipeline | |
def speech_to_speech_translation(audio): | |
translated_text = translate(audio) | |
synthesised_speech = synthesise(translated_text) | |
synthesised_speech = ( | |
synthesised_speech.numpy() * 32767).astype(np.int16) | |
return (16000, synthesised_speech) | |
def predict(transType, language, audio, audio_mic = None): | |
print("debug1:", audio,"debug2", audio_mic) | |
if not audio and audio_mic: | |
audio = audio_mic | |
audio = audio[1] | |
if transType == "Text": | |
return translate(audio), None | |
if transType == "Audio": | |
return "",speech_to_speech_translation(audio) | |
# Define the title etc | |
title = "Swedish STSOT (Speech To Speech Or Text)" | |
description="Use Whisper pretrained model to convert swedish audio to english (text or audio)" | |
supportLangs = ["Swedish", "French (in training)"] | |
transTypes = ["Text", "Audio"] | |
examples = [ | |
["Text", "Swedish", "./ex1.wav", None], | |
["Audio", "Swedish", "./ex2.wav", None] | |
] | |
demo = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Radio(label="Choose your output format", choices=transTypes), | |
gr.Radio(label="Choose a source language", choices=supportLangs, value="Swedish"), | |
gr.Audio(label="Import an audio", sources="upload", type="numpy"), | |
gr.Audio(label="Record an audio", sources="microphone", type="numpy"), | |
], | |
outputs=[ | |
gr.Text(label="Text translation"),gr.Audio(label="Audio translation",type = "numpy") | |
], | |
title=title, | |
description=description, | |
article="", | |
examples=examples, | |
) | |
demo.launch() |