cotxetj commited on
Commit
f21d1ad
1 Parent(s): c144c76

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -4
app.py CHANGED
@@ -111,20 +111,18 @@ for t in topics.tolist():
111
  freq = selected_data["scores"][selected_data.index[0]]
112
  keyword_freq_pairs = zip(keywords, freq)
113
  most_frequent_keyword = max(keyword_freq_pairs, key=lambda x: x[1])
114
- mrk += most_frequent_keyword
115
  input += ", [" + ", ".join(keywords) + "]"
116
 
117
 
118
  input += " I want you to give me only one precise word that best describes the theme of this list. If I give you multiple lists, I want you to give me one word with a maj in front for each of those lists, and separate them by // (your answer should contain only one word for each, if I give you 100 lists, You give me 100 words)"
119
  new_topics = "".join(gpt_predict(input))
120
  nt = new_topics.split("//")
121
- print(len(nt))
122
 
123
  #in case chatgpt overloaded
124
  i = 0
125
  if len(nt) < len(topics.tolist()):
126
  nt = [f"Topic {o+1}: {mrk[o]}" for o in range(len(topics.tolist()))]
127
- print(nt)
128
  for t in topics.tolist():
129
  if t != -1:
130
  readable_topics_dic[nt[i]] = t
@@ -134,7 +132,6 @@ for t in topics.tolist():
134
 
135
 
136
  def display_topics(topic):
137
- print(readable_topics_dic)
138
  topic = readable_topics_dic[topic]
139
  # Filter DataFrame based on the selected topic
140
  selected_data = df[df['topic'] == topic]
 
111
  freq = selected_data["scores"][selected_data.index[0]]
112
  keyword_freq_pairs = zip(keywords, freq)
113
  most_frequent_keyword = max(keyword_freq_pairs, key=lambda x: x[1])
114
+ mrk += most_frequent_keyword[0].capitalize()
115
  input += ", [" + ", ".join(keywords) + "]"
116
 
117
 
118
  input += " I want you to give me only one precise word that best describes the theme of this list. If I give you multiple lists, I want you to give me one word with a maj in front for each of those lists, and separate them by // (your answer should contain only one word for each, if I give you 100 lists, You give me 100 words)"
119
  new_topics = "".join(gpt_predict(input))
120
  nt = new_topics.split("//")
 
121
 
122
  #in case chatgpt overloaded
123
  i = 0
124
  if len(nt) < len(topics.tolist()):
125
  nt = [f"Topic {o+1}: {mrk[o]}" for o in range(len(topics.tolist()))]
 
126
  for t in topics.tolist():
127
  if t != -1:
128
  readable_topics_dic[nt[i]] = t
 
132
 
133
 
134
  def display_topics(topic):
 
135
  topic = readable_topics_dic[topic]
136
  # Filter DataFrame based on the selected topic
137
  selected_data = df[df['topic'] == topic]