Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,209 +1,18 @@
|
|
1 |
-
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, UNet2DConditionModel
|
2 |
-
from diffusers.utils import load_image
|
3 |
-
from diffusers import (
|
4 |
-
DDIMScheduler,
|
5 |
-
PNDMScheduler,
|
6 |
-
LMSDiscreteScheduler,
|
7 |
-
EulerDiscreteScheduler,
|
8 |
-
EulerAncestralDiscreteScheduler,
|
9 |
-
DPMSolverMultistepScheduler,
|
10 |
-
)
|
11 |
-
import torch
|
12 |
-
import os
|
13 |
-
import random
|
14 |
-
import numpy as np
|
15 |
-
from PIL import Image
|
16 |
-
from typing import Tuple
|
17 |
import gradio as gr
|
18 |
-
|
19 |
-
# CosmicMan
|
20 |
-
- CosmicMan: A Text-to-Image Foundation Model for Humans (CVPR 2024 (Highlight))
|
21 |
-
"""
|
22 |
-
|
23 |
-
if not torch.cuda.is_available():
|
24 |
-
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>"
|
25 |
-
|
26 |
-
schedule_map = {
|
27 |
-
"ddim" : DDIMScheduler,
|
28 |
-
"pndm" : PNDMScheduler,
|
29 |
-
"lms" : LMSDiscreteScheduler,
|
30 |
-
"euler" : EulerDiscreteScheduler,
|
31 |
-
"euler_a": EulerAncestralDiscreteScheduler,
|
32 |
-
"dpm" : DPMSolverMultistepScheduler,
|
33 |
-
}
|
34 |
-
|
35 |
-
examples = [
|
36 |
-
"A fit Caucasian elderly woman, her wavy white hair above shoulders, wears a pink floral cotton long-sleeve shirt and a cotton hat against a natural landscape in an upper body shot",
|
37 |
-
"A closeup of a doll with a purple ribbon around her neck, best quality, extremely detailed",
|
38 |
-
"A closeup of a girl with a butterfly painted on her face",
|
39 |
-
"A headshot, an asian elderly male, a blue wall, bald above eyes gray hair",
|
40 |
-
"A closeup portrait shot against a white wall, a fit Caucasian adult female with wavy blonde hair falling above her chest wears a short sleeve silk floral dress and a floral silk normal short sleeve white blouse",
|
41 |
-
"A headshot, an adult caucasian male, fit, a white wall, red crew cut curly hair, short sleeve normal blue t-shirt, best quality, extremely detailed",
|
42 |
-
"A closeup of a man wearing a red shirt with a flower design on it",
|
43 |
-
"There is a man wearing a mask and holding a cell phone",
|
44 |
-
"Two boys playing in the yard",
|
45 |
-
]
|
46 |
-
|
47 |
-
style_list = [
|
48 |
-
{
|
49 |
-
"name": "(No style)",
|
50 |
-
"prompt": "{prompt}",
|
51 |
-
"negative_prompt": "",
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"name": "Cinematic",
|
55 |
-
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
|
56 |
-
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"name": "Photographic",
|
60 |
-
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
|
61 |
-
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
|
62 |
-
},
|
63 |
-
{
|
64 |
-
"name": "Anime",
|
65 |
-
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
|
66 |
-
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
|
67 |
-
},
|
68 |
-
{
|
69 |
-
"name": "Fantasy art",
|
70 |
-
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
|
71 |
-
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
|
72 |
-
},
|
73 |
-
{
|
74 |
-
"name": "Neonpunk",
|
75 |
-
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
|
76 |
-
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
|
77 |
-
}
|
78 |
-
]
|
79 |
-
|
80 |
-
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
81 |
-
STYLE_NAMES = list(styles.keys())
|
82 |
-
DEFAULT_STYLE_NAME = "(No style)"
|
83 |
-
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
84 |
-
MAX_SEED = np.iinfo(np.int32).max
|
85 |
-
NUM_IMAGES_PER_PROMPT = 1
|
86 |
-
|
87 |
-
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
88 |
-
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
89 |
-
if not negative:
|
90 |
-
negative = ""
|
91 |
-
return p.replace("{prompt}", positive), n + negative
|
92 |
|
93 |
-
|
94 |
-
def apply_watermark(self, img):
|
95 |
-
return img
|
96 |
-
|
97 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
98 |
-
if randomize_seed:
|
99 |
-
seed = random.randint(0, MAX_SEED)
|
100 |
-
return seed
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
refiner_model_path: str = "stabilityai/stable-diffusion-xl-refiner-1.0"
|
106 |
-
unet_path: str = "cosmicman/CosmicMan-SDXL"
|
107 |
-
SCHEDULER = schedule_map[schedule]
|
108 |
-
scheduler = SCHEDULER.from_pretrained(base_model_path, subfolder="scheduler")
|
109 |
-
# unet = UNet2DConditionModel.from_pretrained(unet_path)
|
110 |
-
|
111 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
112 |
-
base_model_path,
|
113 |
-
# unet=unet,
|
114 |
-
scheduler=scheduler,
|
115 |
-
use_safetensors=True
|
116 |
-
).to("cuda")
|
117 |
-
pipe.watermark = NoWatermark()
|
118 |
-
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
119 |
-
base_model_path, # we found use base_model_path instead of refiner_model_path may get a better performance
|
120 |
-
scheduler=scheduler,
|
121 |
-
use_safetensors=True
|
122 |
-
).to("cuda")
|
123 |
-
refiner.watermark = NoWatermark()
|
124 |
-
print("Finish Loading Model!")
|
125 |
-
|
126 |
-
def generate_image(prompt,
|
127 |
-
n_prompt="",
|
128 |
-
style: str = DEFAULT_STYLE_NAME,
|
129 |
-
steps: int = 50,
|
130 |
-
height: int = 1024,
|
131 |
-
width: int = 1024,
|
132 |
-
scale: float = 7.5,
|
133 |
-
img_num: int = 4,
|
134 |
-
seeds: int = 42,
|
135 |
-
random_seed: bool = False,
|
136 |
-
):
|
137 |
-
print("Beign to generate")
|
138 |
-
image_list = []
|
139 |
-
for i in range(img_num):
|
140 |
-
seed = int(randomize_seed_fn(seeds, random_seed))
|
141 |
-
generator = torch.Generator().manual_seed(seed)
|
142 |
-
positive_prompt, negative_prompt = apply_style(style, prompt, n_prompt)
|
143 |
-
image = pipe(positive_prompt, num_inference_steps=steps,
|
144 |
-
guidance_scale=scale, height=height,
|
145 |
-
width=width, negative_prompt=negative_prompt,
|
146 |
-
generator=generator, output_type="latent").images[0]
|
147 |
-
image = refiner(positive_prompt, negative_prompt=negative_prompt, image=image[None, :]).images[0]
|
148 |
-
image_list.append((image,f"Seed {seed}"))
|
149 |
-
return image_list
|
150 |
-
|
151 |
-
with gr.Blocks(theme=gr.themes.Soft(),css="style.css") as demo:
|
152 |
-
gr.Markdown(DESCRIPTION)
|
153 |
-
with gr.Group():
|
154 |
-
with gr.Row():
|
155 |
-
with gr.Column():
|
156 |
-
input_prompt = gr.Textbox(label="Input prompt", lines=3, max_lines=5)
|
157 |
-
negative_prompt = gr.Textbox(label="Negative prompt",value="")
|
158 |
-
run_button = gr.Button("Run", scale=0)
|
159 |
-
result = gr.Gallery(label="Result", show_label=False, elem_id="gallery", columns=[2], rows=[2], object_fit="contain", height="auto")
|
160 |
-
with gr.Accordion("Advanced options", open=False):
|
161 |
-
with gr.Row():
|
162 |
-
style_selection = gr.Radio(
|
163 |
-
show_label=True,
|
164 |
-
container=True,
|
165 |
-
interactive=True,
|
166 |
-
choices=STYLE_NAMES,
|
167 |
-
value=DEFAULT_STYLE_NAME,
|
168 |
-
label="Image Style",
|
169 |
-
)
|
170 |
-
with gr.Row():
|
171 |
-
height = gr.Slider(minimum=512, maximum=1536, value=1024, label="Height", step=64)
|
172 |
-
width = gr.Slider(minimum=512, maximum=1536, value=1024, label="Witdh", step=64)
|
173 |
-
with gr.Row():
|
174 |
-
steps = gr.Slider(minimum=1, maximum=50, value=30, label="Number of diffusion steps", step=1)
|
175 |
-
scale = gr.Number(minimum=1, maximum=12, value=7.5, label="Number of scale")
|
176 |
-
with gr.Row():
|
177 |
-
seed = gr.Slider(
|
178 |
-
label="Seed",
|
179 |
-
minimum=0,
|
180 |
-
maximum=MAX_SEED,
|
181 |
-
step=1,
|
182 |
-
value=0,
|
183 |
-
)
|
184 |
-
random_seed = gr.Checkbox(label="Randomize seed", value=True)
|
185 |
-
img_num = gr.Slider(minimum=1, maximum=4, value=4, label="Number of images", step=1)
|
186 |
-
|
187 |
-
gr.Examples(
|
188 |
-
examples=examples,
|
189 |
-
inputs=input_prompt,
|
190 |
-
outputs=result,
|
191 |
-
fn=generate_image,
|
192 |
-
cache_examples=CACHE_EXAMPLES,
|
193 |
-
)
|
194 |
-
|
195 |
-
gr.on(
|
196 |
-
triggers=[
|
197 |
-
input_prompt.submit,
|
198 |
-
negative_prompt.submit,
|
199 |
-
run_button.click,
|
200 |
-
],
|
201 |
-
fn=generate_image,
|
202 |
-
inputs = [input_prompt, negative_prompt, style_selection, steps, height, width, scale, img_num, seed, random_seed],
|
203 |
-
outputs= result,
|
204 |
-
api_name="run")
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
if __name__ == "__main__":
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
def predict(input_img):
|
7 |
+
predictions = pipeline(input_img)
|
8 |
+
return input_img, {p["label"]: p["score"] for p in predictions}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
gradio_app = gr.Interface(
|
11 |
+
predict,
|
12 |
+
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
|
13 |
+
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
14 |
+
title="Hot Dog? Or Not?",
|
15 |
+
)
|
16 |
|
17 |
if __name__ == "__main__":
|
18 |
+
gradio_app.launch()
|
|