CosmicMan-SDXL / app.py
cosmicman's picture
Update app.py
ebb7ad4 verified
raw
history blame
8.93 kB
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, UNet2DConditionModel
from diffusers.utils import load_image
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
)
import torch
import os
import random
import numpy as np
from PIL import Image
from typing import Tuple
import gradio as gr
DESCRIPTION = """
# CosmicMan
- CosmicMan: A Text-to-Image Foundation Model for Humans (CVPR 2024 (Highlight))
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU πŸ₯Ά This demo does not work on CPU.</p>"
schedule_map = {
"ddim" : DDIMScheduler,
"pndm" : PNDMScheduler,
"lms" : LMSDiscreteScheduler,
"euler" : EulerDiscreteScheduler,
"euler_a": EulerAncestralDiscreteScheduler,
"dpm" : DPMSolverMultistepScheduler,
}
examples = [
"A fit Caucasian elderly woman, her wavy white hair above shoulders, wears a pink floral cotton long-sleeve shirt and a cotton hat against a natural landscape in an upper body shot",
"A closeup of a doll with a purple ribbon around her neck, best quality, extremely detailed",
"A closeup of a girl with a butterfly painted on her face",
"A headshot, an asian elderly male, a blue wall, bald above eyes gray hair",
"A closeup portrait shot against a white wall, a fit Caucasian adult female with wavy blonde hair falling above her chest wears a short sleeve silk floral dress and a floral silk normal short sleeve white blouse",
"A headshot, an adult caucasian male, fit, a white wall, red crew cut curly hair, short sleeve normal blue t-shirt, best quality, extremely detailed",
"A closeup of a man wearing a red shirt with a flower design on it",
"There is a man wearing a mask and holding a cell phone",
"Two boys playing in the yard",
]
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
}
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_SEED = np.iinfo(np.int32).max
NUM_IMAGES_PER_PROMPT = 1
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
class NoWatermark:
def apply_watermark(self, img):
return img
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
print("Loading Model!")
schedule: str = "euler_a"
base_model_path: str = "stabilityai/stable-diffusion-xl-base-1.0"
refiner_model_path: str = "stabilityai/stable-diffusion-xl-refiner-1.0"
unet_path: str = "cosmicman/CosmicMan-SDXL"
SCHEDULER = schedule_map[schedule]
scheduler = SCHEDULER.from_pretrained(base_model_path, subfolder="scheduler")
# unet = UNet2DConditionModel.from_pretrained(unet_path)
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_path,
# unet=unet,
scheduler=scheduler,
use_safetensors=True
).to("cuda")
pipe.watermark = NoWatermark()
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
base_model_path, # we found use base_model_path instead of refiner_model_path may get a better performance
scheduler=scheduler,
use_safetensors=True
).to("cuda")
refiner.watermark = NoWatermark()
print("Finish Loading Model!")
def generate_image(prompt,
n_prompt="",
style: str = DEFAULT_STYLE_NAME,
steps: int = 50,
height: int = 1024,
width: int = 1024,
scale: float = 7.5,
img_num: int = 4,
seeds: int = 42,
random_seed: bool = False,
):
print("Beign to generate")
image_list = []
for i in range(img_num):
seed = int(randomize_seed_fn(seeds, random_seed))
generator = torch.Generator().manual_seed(seed)
positive_prompt, negative_prompt = apply_style(style, prompt, n_prompt)
image = pipe(positive_prompt, num_inference_steps=steps,
guidance_scale=scale, height=height,
width=width, negative_prompt=negative_prompt,
generator=generator, output_type="latent").images[0]
image = refiner(positive_prompt, negative_prompt=negative_prompt, image=image[None, :]).images[0]
image_list.append((image,f"Seed {seed}"))
return image_list
with gr.Blocks(theme=gr.themes.Soft(),css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
with gr.Row():
with gr.Column():
input_prompt = gr.Textbox(label="Input prompt", lines=3, max_lines=5)
negative_prompt = gr.Textbox(label="Negative prompt",value="")
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", show_label=False, elem_id="gallery", columns=[2], rows=[2], object_fit="contain", height="auto")
with gr.Accordion("Advanced options", open=False):
with gr.Row():
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Image Style",
)
with gr.Row():
height = gr.Slider(minimum=512, maximum=1536, value=1024, label="Height", step=64)
width = gr.Slider(minimum=512, maximum=1536, value=1024, label="Witdh", step=64)
with gr.Row():
steps = gr.Slider(minimum=1, maximum=50, value=30, label="Number of diffusion steps", step=1)
scale = gr.Number(minimum=1, maximum=12, value=7.5, label="Number of scale")
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
random_seed = gr.Checkbox(label="Randomize seed", value=True)
img_num = gr.Slider(minimum=1, maximum=4, value=4, label="Number of images", step=1)
gr.Examples(
examples=examples,
inputs=input_prompt,
outputs=result,
fn=generate_image,
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[
input_prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate_image,
inputs = [input_prompt, negative_prompt, style_selection, steps, height, width, scale, img_num, seed, random_seed],
outputs= result,
api_name="run")
if __name__ == "__main__":
demo.queue(max_size=20).launch(show_api=False, debug=False)