Corentin commited on
Commit
18d9fce
1 Parent(s): c3bc806

Add application files

Browse files
LICENSE ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU Affero General Public License is a free, copyleft license for
11
+ software and other kinds of works, specifically designed to ensure
12
+ cooperation with the community in the case of network server software.
13
+
14
+ The licenses for most software and other practical works are designed
15
+ to take away your freedom to share and change the works. By contrast,
16
+ our General Public Licenses are intended to guarantee your freedom to
17
+ share and change all versions of a program--to make sure it remains free
18
+ software for all its users.
19
+
20
+ When we speak of free software, we are referring to freedom, not
21
+ price. Our General Public Licenses are designed to make sure that you
22
+ have the freedom to distribute copies of free software (and charge for
23
+ them if you wish), that you receive source code or can get it if you
24
+ want it, that you can change the software or use pieces of it in new
25
+ free programs, and that you know you can do these things.
26
+
27
+ Developers that use our General Public Licenses protect your rights
28
+ with two steps: (1) assert copyright on the software, and (2) offer
29
+ you this License which gives you legal permission to copy, distribute
30
+ and/or modify the software.
31
+
32
+ A secondary benefit of defending all users' freedom is that
33
+ improvements made in alternate versions of the program, if they
34
+ receive widespread use, become available for other developers to
35
+ incorporate. Many developers of free software are heartened and
36
+ encouraged by the resulting cooperation. However, in the case of
37
+ software used on network servers, this result may fail to come about.
38
+ The GNU General Public License permits making a modified version and
39
+ letting the public access it on a server without ever releasing its
40
+ source code to the public.
41
+
42
+ The GNU Affero General Public License is designed specifically to
43
+ ensure that, in such cases, the modified source code becomes available
44
+ to the community. It requires the operator of a network server to
45
+ provide the source code of the modified version running there to the
46
+ users of that server. Therefore, public use of a modified version, on
47
+ a publicly accessible server, gives the public access to the source
48
+ code of the modified version.
49
+
50
+ An older license, called the Affero General Public License and
51
+ published by Affero, was designed to accomplish similar goals. This is
52
+ a different license, not a version of the Affero GPL, but Affero has
53
+ released a new version of the Affero GPL which permits relicensing under
54
+ this license.
55
+
56
+ The precise terms and conditions for copying, distribution and
57
+ modification follow.
58
+
59
+ TERMS AND CONDITIONS
60
+
61
+ 0. Definitions.
62
+
63
+ "This License" refers to version 3 of the GNU Affero General Public License.
64
+
65
+ "Copyright" also means copyright-like laws that apply to other kinds of
66
+ works, such as semiconductor masks.
67
+
68
+ "The Program" refers to any copyrightable work licensed under this
69
+ License. Each licensee is addressed as "you". "Licensees" and
70
+ "recipients" may be individuals or organizations.
71
+
72
+ To "modify" a work means to copy from or adapt all or part of the work
73
+ in a fashion requiring copyright permission, other than the making of an
74
+ exact copy. The resulting work is called a "modified version" of the
75
+ earlier work or a work "based on" the earlier work.
76
+
77
+ A "covered work" means either the unmodified Program or a work based
78
+ on the Program.
79
+
80
+ To "propagate" a work means to do anything with it that, without
81
+ permission, would make you directly or secondarily liable for
82
+ infringement under applicable copyright law, except executing it on a
83
+ computer or modifying a private copy. Propagation includes copying,
84
+ distribution (with or without modification), making available to the
85
+ public, and in some countries other activities as well.
86
+
87
+ To "convey" a work means any kind of propagation that enables other
88
+ parties to make or receive copies. Mere interaction with a user through
89
+ a computer network, with no transfer of a copy, is not conveying.
90
+
91
+ An interactive user interface displays "Appropriate Legal Notices"
92
+ to the extent that it includes a convenient and prominently visible
93
+ feature that (1) displays an appropriate copyright notice, and (2)
94
+ tells the user that there is no warranty for the work (except to the
95
+ extent that warranties are provided), that licensees may convey the
96
+ work under this License, and how to view a copy of this License. If
97
+ the interface presents a list of user commands or options, such as a
98
+ menu, a prominent item in the list meets this criterion.
99
+
100
+ 1. Source Code.
101
+
102
+ The "source code" for a work means the preferred form of the work
103
+ for making modifications to it. "Object code" means any non-source
104
+ form of a work.
105
+
106
+ A "Standard Interface" means an interface that either is an official
107
+ standard defined by a recognized standards body, or, in the case of
108
+ interfaces specified for a particular programming language, one that
109
+ is widely used among developers working in that language.
110
+
111
+ The "System Libraries" of an executable work include anything, other
112
+ than the work as a whole, that (a) is included in the normal form of
113
+ packaging a Major Component, but which is not part of that Major
114
+ Component, and (b) serves only to enable use of the work with that
115
+ Major Component, or to implement a Standard Interface for which an
116
+ implementation is available to the public in source code form. A
117
+ "Major Component", in this context, means a major essential component
118
+ (kernel, window system, and so on) of the specific operating system
119
+ (if any) on which the executable work runs, or a compiler used to
120
+ produce the work, or an object code interpreter used to run it.
121
+
122
+ The "Corresponding Source" for a work in object code form means all
123
+ the source code needed to generate, install, and (for an executable
124
+ work) run the object code and to modify the work, including scripts to
125
+ control those activities. However, it does not include the work's
126
+ System Libraries, or general-purpose tools or generally available free
127
+ programs which are used unmodified in performing those activities but
128
+ which are not part of the work. For example, Corresponding Source
129
+ includes interface definition files associated with source files for
130
+ the work, and the source code for shared libraries and dynamically
131
+ linked subprograms that the work is specifically designed to require,
132
+ such as by intimate data communication or control flow between those
133
+ subprograms and other parts of the work.
134
+
135
+ The Corresponding Source need not include anything that users
136
+ can regenerate automatically from other parts of the Corresponding
137
+ Source.
138
+
139
+ The Corresponding Source for a work in source code form is that
140
+ same work.
141
+
142
+ 2. Basic Permissions.
143
+
144
+ All rights granted under this License are granted for the term of
145
+ copyright on the Program, and are irrevocable provided the stated
146
+ conditions are met. This License explicitly affirms your unlimited
147
+ permission to run the unmodified Program. The output from running a
148
+ covered work is covered by this License only if the output, given its
149
+ content, constitutes a covered work. This License acknowledges your
150
+ rights of fair use or other equivalent, as provided by copyright law.
151
+
152
+ You may make, run and propagate covered works that you do not
153
+ convey, without conditions so long as your license otherwise remains
154
+ in force. You may convey covered works to others for the sole purpose
155
+ of having them make modifications exclusively for you, or provide you
156
+ with facilities for running those works, provided that you comply with
157
+ the terms of this License in conveying all material for which you do
158
+ not control copyright. Those thus making or running the covered works
159
+ for you must do so exclusively on your behalf, under your direction
160
+ and control, on terms that prohibit them from making any copies of
161
+ your copyrighted material outside their relationship with you.
162
+
163
+ Conveying under any other circumstances is permitted solely under
164
+ the conditions stated below. Sublicensing is not allowed; section 10
165
+ makes it unnecessary.
166
+
167
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
+
169
+ No covered work shall be deemed part of an effective technological
170
+ measure under any applicable law fulfilling obligations under article
171
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
+ similar laws prohibiting or restricting circumvention of such
173
+ measures.
174
+
175
+ When you convey a covered work, you waive any legal power to forbid
176
+ circumvention of technological measures to the extent such circumvention
177
+ is effected by exercising rights under this License with respect to
178
+ the covered work, and you disclaim any intention to limit operation or
179
+ modification of the work as a means of enforcing, against the work's
180
+ users, your or third parties' legal rights to forbid circumvention of
181
+ technological measures.
182
+
183
+ 4. Conveying Verbatim Copies.
184
+
185
+ You may convey verbatim copies of the Program's source code as you
186
+ receive it, in any medium, provided that you conspicuously and
187
+ appropriately publish on each copy an appropriate copyright notice;
188
+ keep intact all notices stating that this License and any
189
+ non-permissive terms added in accord with section 7 apply to the code;
190
+ keep intact all notices of the absence of any warranty; and give all
191
+ recipients a copy of this License along with the Program.
192
+
193
+ You may charge any price or no price for each copy that you convey,
194
+ and you may offer support or warranty protection for a fee.
195
+
196
+ 5. Conveying Modified Source Versions.
197
+
198
+ You may convey a work based on the Program, or the modifications to
199
+ produce it from the Program, in the form of source code under the
200
+ terms of section 4, provided that you also meet all of these conditions:
201
+
202
+ a) The work must carry prominent notices stating that you modified
203
+ it, and giving a relevant date.
204
+
205
+ b) The work must carry prominent notices stating that it is
206
+ released under this License and any conditions added under section
207
+ 7. This requirement modifies the requirement in section 4 to
208
+ "keep intact all notices".
209
+
210
+ c) You must license the entire work, as a whole, under this
211
+ License to anyone who comes into possession of a copy. This
212
+ License will therefore apply, along with any applicable section 7
213
+ additional terms, to the whole of the work, and all its parts,
214
+ regardless of how they are packaged. This License gives no
215
+ permission to license the work in any other way, but it does not
216
+ invalidate such permission if you have separately received it.
217
+
218
+ d) If the work has interactive user interfaces, each must display
219
+ Appropriate Legal Notices; however, if the Program has interactive
220
+ interfaces that do not display Appropriate Legal Notices, your
221
+ work need not make them do so.
222
+
223
+ A compilation of a covered work with other separate and independent
224
+ works, which are not by their nature extensions of the covered work,
225
+ and which are not combined with it such as to form a larger program,
226
+ in or on a volume of a storage or distribution medium, is called an
227
+ "aggregate" if the compilation and its resulting copyright are not
228
+ used to limit the access or legal rights of the compilation's users
229
+ beyond what the individual works permit. Inclusion of a covered work
230
+ in an aggregate does not cause this License to apply to the other
231
+ parts of the aggregate.
232
+
233
+ 6. Conveying Non-Source Forms.
234
+
235
+ You may convey a covered work in object code form under the terms
236
+ of sections 4 and 5, provided that you also convey the
237
+ machine-readable Corresponding Source under the terms of this License,
238
+ in one of these ways:
239
+
240
+ a) Convey the object code in, or embodied in, a physical product
241
+ (including a physical distribution medium), accompanied by the
242
+ Corresponding Source fixed on a durable physical medium
243
+ customarily used for software interchange.
244
+
245
+ b) Convey the object code in, or embodied in, a physical product
246
+ (including a physical distribution medium), accompanied by a
247
+ written offer, valid for at least three years and valid for as
248
+ long as you offer spare parts or customer support for that product
249
+ model, to give anyone who possesses the object code either (1) a
250
+ copy of the Corresponding Source for all the software in the
251
+ product that is covered by this License, on a durable physical
252
+ medium customarily used for software interchange, for a price no
253
+ more than your reasonable cost of physically performing this
254
+ conveying of source, or (2) access to copy the
255
+ Corresponding Source from a network server at no charge.
256
+
257
+ c) Convey individual copies of the object code with a copy of the
258
+ written offer to provide the Corresponding Source. This
259
+ alternative is allowed only occasionally and noncommercially, and
260
+ only if you received the object code with such an offer, in accord
261
+ with subsection 6b.
262
+
263
+ d) Convey the object code by offering access from a designated
264
+ place (gratis or for a charge), and offer equivalent access to the
265
+ Corresponding Source in the same way through the same place at no
266
+ further charge. You need not require recipients to copy the
267
+ Corresponding Source along with the object code. If the place to
268
+ copy the object code is a network server, the Corresponding Source
269
+ may be on a different server (operated by you or a third party)
270
+ that supports equivalent copying facilities, provided you maintain
271
+ clear directions next to the object code saying where to find the
272
+ Corresponding Source. Regardless of what server hosts the
273
+ Corresponding Source, you remain obligated to ensure that it is
274
+ available for as long as needed to satisfy these requirements.
275
+
276
+ e) Convey the object code using peer-to-peer transmission, provided
277
+ you inform other peers where the object code and Corresponding
278
+ Source of the work are being offered to the general public at no
279
+ charge under subsection 6d.
280
+
281
+ A separable portion of the object code, whose source code is excluded
282
+ from the Corresponding Source as a System Library, need not be
283
+ included in conveying the object code work.
284
+
285
+ A "User Product" is either (1) a "consumer product", which means any
286
+ tangible personal property which is normally used for personal, family,
287
+ or household purposes, or (2) anything designed or sold for incorporation
288
+ into a dwelling. In determining whether a product is a consumer product,
289
+ doubtful cases shall be resolved in favor of coverage. For a particular
290
+ product received by a particular user, "normally used" refers to a
291
+ typical or common use of that class of product, regardless of the status
292
+ of the particular user or of the way in which the particular user
293
+ actually uses, or expects or is expected to use, the product. A product
294
+ is a consumer product regardless of whether the product has substantial
295
+ commercial, industrial or non-consumer uses, unless such uses represent
296
+ the only significant mode of use of the product.
297
+
298
+ "Installation Information" for a User Product means any methods,
299
+ procedures, authorization keys, or other information required to install
300
+ and execute modified versions of a covered work in that User Product from
301
+ a modified version of its Corresponding Source. The information must
302
+ suffice to ensure that the continued functioning of the modified object
303
+ code is in no case prevented or interfered with solely because
304
+ modification has been made.
305
+
306
+ If you convey an object code work under this section in, or with, or
307
+ specifically for use in, a User Product, and the conveying occurs as
308
+ part of a transaction in which the right of possession and use of the
309
+ User Product is transferred to the recipient in perpetuity or for a
310
+ fixed term (regardless of how the transaction is characterized), the
311
+ Corresponding Source conveyed under this section must be accompanied
312
+ by the Installation Information. But this requirement does not apply
313
+ if neither you nor any third party retains the ability to install
314
+ modified object code on the User Product (for example, the work has
315
+ been installed in ROM).
316
+
317
+ The requirement to provide Installation Information does not include a
318
+ requirement to continue to provide support service, warranty, or updates
319
+ for a work that has been modified or installed by the recipient, or for
320
+ the User Product in which it has been modified or installed. Access to a
321
+ network may be denied when the modification itself materially and
322
+ adversely affects the operation of the network or violates the rules and
323
+ protocols for communication across the network.
324
+
325
+ Corresponding Source conveyed, and Installation Information provided,
326
+ in accord with this section must be in a format that is publicly
327
+ documented (and with an implementation available to the public in
328
+ source code form), and must require no special password or key for
329
+ unpacking, reading or copying.
330
+
331
+ 7. Additional Terms.
332
+
333
+ "Additional permissions" are terms that supplement the terms of this
334
+ License by making exceptions from one or more of its conditions.
335
+ Additional permissions that are applicable to the entire Program shall
336
+ be treated as though they were included in this License, to the extent
337
+ that they are valid under applicable law. If additional permissions
338
+ apply only to part of the Program, that part may be used separately
339
+ under those permissions, but the entire Program remains governed by
340
+ this License without regard to the additional permissions.
341
+
342
+ When you convey a copy of a covered work, you may at your option
343
+ remove any additional permissions from that copy, or from any part of
344
+ it. (Additional permissions may be written to require their own
345
+ removal in certain cases when you modify the work.) You may place
346
+ additional permissions on material, added by you to a covered work,
347
+ for which you have or can give appropriate copyright permission.
348
+
349
+ Notwithstanding any other provision of this License, for material you
350
+ add to a covered work, you may (if authorized by the copyright holders of
351
+ that material) supplement the terms of this License with terms:
352
+
353
+ a) Disclaiming warranty or limiting liability differently from the
354
+ terms of sections 15 and 16 of this License; or
355
+
356
+ b) Requiring preservation of specified reasonable legal notices or
357
+ author attributions in that material or in the Appropriate Legal
358
+ Notices displayed by works containing it; or
359
+
360
+ c) Prohibiting misrepresentation of the origin of that material, or
361
+ requiring that modified versions of such material be marked in
362
+ reasonable ways as different from the original version; or
363
+
364
+ d) Limiting the use for publicity purposes of names of licensors or
365
+ authors of the material; or
366
+
367
+ e) Declining to grant rights under trademark law for use of some
368
+ trade names, trademarks, or service marks; or
369
+
370
+ f) Requiring indemnification of licensors and authors of that
371
+ material by anyone who conveys the material (or modified versions of
372
+ it) with contractual assumptions of liability to the recipient, for
373
+ any liability that these contractual assumptions directly impose on
374
+ those licensors and authors.
375
+
376
+ All other non-permissive additional terms are considered "further
377
+ restrictions" within the meaning of section 10. If the Program as you
378
+ received it, or any part of it, contains a notice stating that it is
379
+ governed by this License along with a term that is a further
380
+ restriction, you may remove that term. If a license document contains
381
+ a further restriction but permits relicensing or conveying under this
382
+ License, you may add to a covered work material governed by the terms
383
+ of that license document, provided that the further restriction does
384
+ not survive such relicensing or conveying.
385
+
386
+ If you add terms to a covered work in accord with this section, you
387
+ must place, in the relevant source files, a statement of the
388
+ additional terms that apply to those files, or a notice indicating
389
+ where to find the applicable terms.
390
+
391
+ Additional terms, permissive or non-permissive, may be stated in the
392
+ form of a separately written license, or stated as exceptions;
393
+ the above requirements apply either way.
394
+
395
+ 8. Termination.
396
+
397
+ You may not propagate or modify a covered work except as expressly
398
+ provided under this License. Any attempt otherwise to propagate or
399
+ modify it is void, and will automatically terminate your rights under
400
+ this License (including any patent licenses granted under the third
401
+ paragraph of section 11).
402
+
403
+ However, if you cease all violation of this License, then your
404
+ license from a particular copyright holder is reinstated (a)
405
+ provisionally, unless and until the copyright holder explicitly and
406
+ finally terminates your license, and (b) permanently, if the copyright
407
+ holder fails to notify you of the violation by some reasonable means
408
+ prior to 60 days after the cessation.
409
+
410
+ Moreover, your license from a particular copyright holder is
411
+ reinstated permanently if the copyright holder notifies you of the
412
+ violation by some reasonable means, this is the first time you have
413
+ received notice of violation of this License (for any work) from that
414
+ copyright holder, and you cure the violation prior to 30 days after
415
+ your receipt of the notice.
416
+
417
+ Termination of your rights under this section does not terminate the
418
+ licenses of parties who have received copies or rights from you under
419
+ this License. If your rights have been terminated and not permanently
420
+ reinstated, you do not qualify to receive new licenses for the same
421
+ material under section 10.
422
+
423
+ 9. Acceptance Not Required for Having Copies.
424
+
425
+ You are not required to accept this License in order to receive or
426
+ run a copy of the Program. Ancillary propagation of a covered work
427
+ occurring solely as a consequence of using peer-to-peer transmission
428
+ to receive a copy likewise does not require acceptance. However,
429
+ nothing other than this License grants you permission to propagate or
430
+ modify any covered work. These actions infringe copyright if you do
431
+ not accept this License. Therefore, by modifying or propagating a
432
+ covered work, you indicate your acceptance of this License to do so.
433
+
434
+ 10. Automatic Licensing of Downstream Recipients.
435
+
436
+ Each time you convey a covered work, the recipient automatically
437
+ receives a license from the original licensors, to run, modify and
438
+ propagate that work, subject to this License. You are not responsible
439
+ for enforcing compliance by third parties with this License.
440
+
441
+ An "entity transaction" is a transaction transferring control of an
442
+ organization, or substantially all assets of one, or subdividing an
443
+ organization, or merging organizations. If propagation of a covered
444
+ work results from an entity transaction, each party to that
445
+ transaction who receives a copy of the work also receives whatever
446
+ licenses to the work the party's predecessor in interest had or could
447
+ give under the previous paragraph, plus a right to possession of the
448
+ Corresponding Source of the work from the predecessor in interest, if
449
+ the predecessor has it or can get it with reasonable efforts.
450
+
451
+ You may not impose any further restrictions on the exercise of the
452
+ rights granted or affirmed under this License. For example, you may
453
+ not impose a license fee, royalty, or other charge for exercise of
454
+ rights granted under this License, and you may not initiate litigation
455
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
456
+ any patent claim is infringed by making, using, selling, offering for
457
+ sale, or importing the Program or any portion of it.
458
+
459
+ 11. Patents.
460
+
461
+ A "contributor" is a copyright holder who authorizes use under this
462
+ License of the Program or a work on which the Program is based. The
463
+ work thus licensed is called the contributor's "contributor version".
464
+
465
+ A contributor's "essential patent claims" are all patent claims
466
+ owned or controlled by the contributor, whether already acquired or
467
+ hereafter acquired, that would be infringed by some manner, permitted
468
+ by this License, of making, using, or selling its contributor version,
469
+ but do not include claims that would be infringed only as a
470
+ consequence of further modification of the contributor version. For
471
+ purposes of this definition, "control" includes the right to grant
472
+ patent sublicenses in a manner consistent with the requirements of
473
+ this License.
474
+
475
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
476
+ patent license under the contributor's essential patent claims, to
477
+ make, use, sell, offer for sale, import and otherwise run, modify and
478
+ propagate the contents of its contributor version.
479
+
480
+ In the following three paragraphs, a "patent license" is any express
481
+ agreement or commitment, however denominated, not to enforce a patent
482
+ (such as an express permission to practice a patent or covenant not to
483
+ sue for patent infringement). To "grant" such a patent license to a
484
+ party means to make such an agreement or commitment not to enforce a
485
+ patent against the party.
486
+
487
+ If you convey a covered work, knowingly relying on a patent license,
488
+ and the Corresponding Source of the work is not available for anyone
489
+ to copy, free of charge and under the terms of this License, through a
490
+ publicly available network server or other readily accessible means,
491
+ then you must either (1) cause the Corresponding Source to be so
492
+ available, or (2) arrange to deprive yourself of the benefit of the
493
+ patent license for this particular work, or (3) arrange, in a manner
494
+ consistent with the requirements of this License, to extend the patent
495
+ license to downstream recipients. "Knowingly relying" means you have
496
+ actual knowledge that, but for the patent license, your conveying the
497
+ covered work in a country, or your recipient's use of the covered work
498
+ in a country, would infringe one or more identifiable patents in that
499
+ country that you have reason to believe are valid.
500
+
501
+ If, pursuant to or in connection with a single transaction or
502
+ arrangement, you convey, or propagate by procuring conveyance of, a
503
+ covered work, and grant a patent license to some of the parties
504
+ receiving the covered work authorizing them to use, propagate, modify
505
+ or convey a specific copy of the covered work, then the patent license
506
+ you grant is automatically extended to all recipients of the covered
507
+ work and works based on it.
508
+
509
+ A patent license is "discriminatory" if it does not include within
510
+ the scope of its coverage, prohibits the exercise of, or is
511
+ conditioned on the non-exercise of one or more of the rights that are
512
+ specifically granted under this License. You may not convey a covered
513
+ work if you are a party to an arrangement with a third party that is
514
+ in the business of distributing software, under which you make payment
515
+ to the third party based on the extent of your activity of conveying
516
+ the work, and under which the third party grants, to any of the
517
+ parties who would receive the covered work from you, a discriminatory
518
+ patent license (a) in connection with copies of the covered work
519
+ conveyed by you (or copies made from those copies), or (b) primarily
520
+ for and in connection with specific products or compilations that
521
+ contain the covered work, unless you entered into that arrangement,
522
+ or that patent license was granted, prior to 28 March 2007.
523
+
524
+ Nothing in this License shall be construed as excluding or limiting
525
+ any implied license or other defenses to infringement that may
526
+ otherwise be available to you under applicable patent law.
527
+
528
+ 12. No Surrender of Others' Freedom.
529
+
530
+ If conditions are imposed on you (whether by court order, agreement or
531
+ otherwise) that contradict the conditions of this License, they do not
532
+ excuse you from the conditions of this License. If you cannot convey a
533
+ covered work so as to satisfy simultaneously your obligations under this
534
+ License and any other pertinent obligations, then as a consequence you may
535
+ not convey it at all. For example, if you agree to terms that obligate you
536
+ to collect a royalty for further conveying from those to whom you convey
537
+ the Program, the only way you could satisfy both those terms and this
538
+ License would be to refrain entirely from conveying the Program.
539
+
540
+ 13. Remote Network Interaction; Use with the GNU General Public License.
541
+
542
+ Notwithstanding any other provision of this License, if you modify the
543
+ Program, your modified version must prominently offer all users
544
+ interacting with it remotely through a computer network (if your version
545
+ supports such interaction) an opportunity to receive the Corresponding
546
+ Source of your version by providing access to the Corresponding Source
547
+ from a network server at no charge, through some standard or customary
548
+ means of facilitating copying of software. This Corresponding Source
549
+ shall include the Corresponding Source for any work covered by version 3
550
+ of the GNU General Public License that is incorporated pursuant to the
551
+ following paragraph.
552
+
553
+ Notwithstanding any other provision of this License, you have
554
+ permission to link or combine any covered work with a work licensed
555
+ under version 3 of the GNU General Public License into a single
556
+ combined work, and to convey the resulting work. The terms of this
557
+ License will continue to apply to the part which is the covered work,
558
+ but the work with which it is combined will remain governed by version
559
+ 3 of the GNU General Public License.
560
+
561
+ 14. Revised Versions of this License.
562
+
563
+ The Free Software Foundation may publish revised and/or new versions of
564
+ the GNU Affero General Public License from time to time. Such new versions
565
+ will be similar in spirit to the present version, but may differ in detail to
566
+ address new problems or concerns.
567
+
568
+ Each version is given a distinguishing version number. If the
569
+ Program specifies that a certain numbered version of the GNU Affero General
570
+ Public License "or any later version" applies to it, you have the
571
+ option of following the terms and conditions either of that numbered
572
+ version or of any later version published by the Free Software
573
+ Foundation. If the Program does not specify a version number of the
574
+ GNU Affero General Public License, you may choose any version ever published
575
+ by the Free Software Foundation.
576
+
577
+ If the Program specifies that a proxy can decide which future
578
+ versions of the GNU Affero General Public License can be used, that proxy's
579
+ public statement of acceptance of a version permanently authorizes you
580
+ to choose that version for the Program.
581
+
582
+ Later license versions may give you additional or different
583
+ permissions. However, no additional obligations are imposed on any
584
+ author or copyright holder as a result of your choosing to follow a
585
+ later version.
586
+
587
+ 15. Disclaimer of Warranty.
588
+
589
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
+
598
+ 16. Limitation of Liability.
599
+
600
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
+ SUCH DAMAGES.
609
+
610
+ 17. Interpretation of Sections 15 and 16.
611
+
612
+ If the disclaimer of warranty and limitation of liability provided
613
+ above cannot be given local legal effect according to their terms,
614
+ reviewing courts shall apply local law that most closely approximates
615
+ an absolute waiver of all civil liability in connection with the
616
+ Program, unless a warranty or assumption of liability accompanies a
617
+ copy of the Program in return for a fee.
618
+
619
+ END OF TERMS AND CONDITIONS
620
+
621
+ How to Apply These Terms to Your New Programs
622
+
623
+ If you develop a new program, and you want it to be of the greatest
624
+ possible use to the public, the best way to achieve this is to make it
625
+ free software which everyone can redistribute and change under these terms.
626
+
627
+ To do so, attach the following notices to the program. It is safest
628
+ to attach them to the start of each source file to most effectively
629
+ state the exclusion of warranty; and each file should have at least
630
+ the "copyright" line and a pointer to where the full notice is found.
631
+
632
+ <one line to give the program's name and a brief idea of what it does.>
633
+ Copyright (C) <year> <name of author>
634
+
635
+ This program is free software: you can redistribute it and/or modify
636
+ it under the terms of the GNU Affero General Public License as published
637
+ by the Free Software Foundation, either version 3 of the License, or
638
+ (at your option) any later version.
639
+
640
+ This program is distributed in the hope that it will be useful,
641
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
642
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
+ GNU Affero General Public License for more details.
644
+
645
+ You should have received a copy of the GNU Affero General Public License
646
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
647
+
648
+ Also add information on how to contact you by electronic and paper mail.
649
+
650
+ If your software can interact with users remotely through a computer
651
+ network, you should also make sure that it provides a way for users to
652
+ get its source. For example, if your program is a web application, its
653
+ interface could display a "Source" link that leads users to an archive
654
+ of the code. There are many ways you could offer source, and different
655
+ solutions will be better for different programs; see section 13 for the
656
+ specific requirements.
657
+
658
+ You should also get your employer (if you work as a programmer) or school,
659
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
660
+ For more information on this, and how to apply and follow the GNU AGPL, see
661
+ <https://www.gnu.org/licenses/>.
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ st.set_page_config(
4
+ page_title="MyoQuant-Streamlit",
5
+ page_icon="🔬",
6
+ )
7
+
8
+ st.write("# Welcome to MyoQuant-Streamlit 👋")
9
+
10
+ st.sidebar.success("Select the corresponding staining analysis above.")
11
+
12
+ st.markdown(
13
+ """
14
+ ## MyoQuant-Streamlit🔬 is a demo web interface to showcase the usage of [MyoQuant](https://github.com/lambda-science/MyoQuant).
15
+
16
+ ![MyoQuant Banner](https://i.imgur.com/mzALgZL.png)
17
+
18
+ [MyoQuant🔬 is a command-line tool to automatically quantify pathological features in muscle fiber histology images.](https://github.com/lambda-science/MyoQuant)
19
+ It is built using CellPose, Stardist, custom neural-network models and image analysis techniques to automatically analyze myopathy histology images. Currently MyoQuant is capable of quantifying centralization of nuclei in muscle fiber with HE staining and anomaly in the mitochondria distribution in muscle fibers with SDH staining.
20
+ This web application is intended for demonstration purposes only.
21
+
22
+ ## How to Use
23
+
24
+ Once on the demo, click on the corresponding staining analysis on the sidebar, and upload your histology image. Results will be displayed in the main area automatically.
25
+ For HE Staining analysis, you can download this sample image: [HERE](https://www.lbgi.fr/~meyer/SDH_models/sample_he.jpg)
26
+ For SDH Staining analysis, you can download this sample image: [HERE](https://www.lbgi.fr/~meyer/SDH_models/sample_sdh.jpg)
27
+
28
+ ## Contact
29
+ Creator and Maintainer: [**Corentin Meyer**, 3rd year PhD Student in the CSTB Team, ICube — CNRS — Unistra](https://lambda-science.github.io/) <corentin.meyer@etu.unistra.fr>
30
+ The source code for MyoQuant is available [HERE](https://github.com/lambda-science/MyoQuant), for the demo website (MyoQuant-Streamlit) it is available [HERE](https://github.com/lambda-science/MyoQuant-Streamlit)
31
+
32
+ ## Partners
33
+
34
+ ![Partners Banner](https://i.imgur.com/Xk9wBFQ.png)
35
+ MyoQuant is born within the collaboration between the [CSTB Team @ ICube](https://cstb.icube.unistra.fr/en/index.php/Home) led by Julie D. Thompson, the [Morphological Unit of the Institute of Myology of Paris](https://www.institut-myologie.org/en/recherche-2/neuromuscular-investigation-center/morphological-unit/) led by Teresinha Evangelista, the [imagery platform MyoImage of Center of Research in Myology](https://recherche-myologie.fr/technologies/myoimage/) led by Bruno Cadot, [the photonic microscopy platform of the IGMBC](https://www.igbmc.fr/en/plateformes-technologiques/photonic-microscopy) led by Bertrand Vernay and the [Pathophysiology of neuromuscular diseases team @ IGBMC](https://www.igbmc.fr/en/igbmc/a-propos-de-ligbmc/directory/jocelyn-laporte) led by Jocelyn Laporte.
36
+ """
37
+ )
draw_line.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def line_equation(x1, y1, x2, y2):
2
+ m = (y2 - y1) / (x2 - x1)
3
+ b = y1 - m * x1
4
+ return m, b
5
+
6
+
7
+ def calculate_intersection(m, b, image_dim=(256, 256)):
8
+ x = [0, image_dim[1]]
9
+ y = [0, image_dim[0]]
10
+ results = []
11
+ for i in x:
12
+ intersect = m * i + b
13
+ if intersect >= 0 and intersect < image_dim[0]:
14
+ results.append((i, intersect))
15
+ for i in y:
16
+ intersect = (i - b) / m
17
+ if intersect >= 0 and intersect < image_dim[1]:
18
+ results.append((intersect, i))
19
+ return results
20
+
21
+
22
+ def calculate_distance(x1, y1, x2, y2):
23
+ return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
24
+
25
+
26
+ def calculate_closest_point(x1, y1, intersections):
27
+ distances = []
28
+ for coords in intersections:
29
+ distances.append(calculate_distance(x1, y1, coords[0], coords[1]))
30
+ return intersections[distances.index(min(distances))]
gradcam.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ import matplotlib.cm as cm
4
+ import numpy as np
5
+
6
+ # GRAD-CAM
7
+ @st.experimental_memo
8
+ def get_img_array(img_path, size):
9
+ # `img` is a PIL image of size 299x299
10
+ img = tf.keras.preprocessing.image.load_img(img_path, target_size=size)
11
+ # `array` is a float32 Numpy array of shape (299, 299, 3)
12
+ array = tf.keras.preprocessing.image.img_to_array(img)
13
+ # We add a dimension to transform our array into a "batch"
14
+ # of size (1, 299, 299, 3)
15
+ array = np.expand_dims(array, axis=0)
16
+ return array
17
+
18
+
19
+ @st.experimental_memo
20
+ def make_gradcam_heatmap(img_array, _model, last_conv_layer_name, pred_index=None):
21
+ # First, we create a model that maps the input image to the activations
22
+ # of the last conv layer as well as the output predictions
23
+ grad_model = tf.keras.models.Model(
24
+ [_model.inputs], [_model.get_layer(last_conv_layer_name).output, _model.output]
25
+ )
26
+
27
+ # Then, we compute the gradient of the top predicted class for our input image
28
+ # with respect to the activations of the last conv layer
29
+ with tf.GradientTape() as tape:
30
+ last_conv_layer_output, preds = grad_model(img_array)
31
+ if pred_index is None:
32
+ pred_index = tf.argmax(preds[0])
33
+ class_channel = preds[:, pred_index]
34
+
35
+ # This is the gradient of the output neuron (top predicted or chosen)
36
+ # with regard to the output feature map of the last conv layer
37
+ grads = tape.gradient(class_channel, last_conv_layer_output)
38
+
39
+ # This is a vector where each entry is the mean intensity of the gradient
40
+ # over a specific feature map channel
41
+ pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
42
+
43
+ # We multiply each channel in the feature map array
44
+ # by "how important this channel is" with regard to the top predicted class
45
+ # then sum all the channels to obtain the heatmap class activation
46
+ last_conv_layer_output = last_conv_layer_output[0]
47
+ heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
48
+ heatmap = tf.squeeze(heatmap)
49
+
50
+ # For visualization purpose, we will also normalize the heatmap between 0 & 1
51
+ heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
52
+ return heatmap.numpy()
53
+
54
+
55
+ @st.experimental_memo
56
+ def save_and_display_gradcam(img, heatmap, cam_path="cam.jpg", alpha=0.5):
57
+ # Rescale heatmap to a range 0-255
58
+ heatmap = np.uint8(255 * heatmap)
59
+
60
+ # Use jet colormap to colorize heatmap
61
+ jet = cm.get_cmap("jet")
62
+
63
+ # Use RGB values of the colormap
64
+ jet_colors = jet(np.arange(256))[:, :3]
65
+ jet_heatmap = jet_colors[heatmap]
66
+
67
+ # Create an image with RGB colorized heatmap
68
+ jet_heatmap = tf.keras.preprocessing.image.array_to_img(jet_heatmap)
69
+ jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
70
+ jet_heatmap = tf.keras.preprocessing.image.img_to_array(jet_heatmap)
71
+
72
+ # Superimpose the heatmap on original image
73
+ superimposed_img = jet_heatmap * alpha + img
74
+ superimposed_img = tf.keras.preprocessing.image.array_to_img(superimposed_img)
75
+ return superimposed_img
pages/1_HE_Staining_Analysis.py ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from cellpose import models, core
3
+ from stardist.models import StarDist2D
4
+ from csbdeep.utils import normalize
5
+ import matplotlib
6
+
7
+ try:
8
+ from imageio.v2 import imread
9
+ except:
10
+ from imageio import imread
11
+ from skimage.measure import regionprops_table
12
+ import pandas as pd
13
+ import matplotlib.pyplot as plt
14
+ from stardist import random_label_cmap
15
+ from tensorflow.config import list_physical_devices
16
+ from draw_line import *
17
+ from skimage.draw import line
18
+ import numpy as np
19
+
20
+ st.set_page_config(
21
+ page_title="MyoQuant HE Analysis",
22
+ page_icon="🔬",
23
+ )
24
+
25
+ if len(list_physical_devices("GPU")) >= 1:
26
+ use_GPU = True
27
+ else:
28
+ use_GPU = False
29
+
30
+
31
+ @st.experimental_singleton
32
+ def load_cellpose():
33
+ model_c = models.Cellpose(gpu=use_GPU, model_type="cyto2")
34
+ return model_c
35
+
36
+
37
+ @st.experimental_singleton
38
+ def load_stardist():
39
+ model_s = StarDist2D.from_pretrained("2D_versatile_he")
40
+ return model_s
41
+
42
+
43
+ @st.experimental_memo
44
+ def run_cellpose(image):
45
+ channel = [[0, 0]]
46
+ mask_cellpose, flow, style, diam = model_cellpose.eval(
47
+ image, diameter=None, channels=channel
48
+ )
49
+ return mask_cellpose
50
+
51
+
52
+ @st.experimental_memo
53
+ def run_stardist(image, nms_thresh=0.4, prob_thresh=0.5):
54
+ img_norm = image / 255
55
+ img_norm = normalize(img_norm, 1, 99.8)
56
+ mask_stardist, details = model_stardist.predict_instances(
57
+ img_norm, nms_thresh=nms_thresh, prob_thresh=prob_thresh
58
+ )
59
+ return mask_stardist
60
+
61
+
62
+ @st.experimental_memo
63
+ def extract_ROIs(histo_img, index, cellpose_df, mask_stardist):
64
+ single_cell_img = histo_img[
65
+ cellpose_df.iloc[index, 5] : cellpose_df.iloc[index, 7],
66
+ cellpose_df.iloc[index, 6] : cellpose_df.iloc[index, 8],
67
+ ].copy()
68
+ nucleus_single_cell_img = mask_stardist[
69
+ cellpose_df.iloc[index, 5] : cellpose_df.iloc[index, 7],
70
+ cellpose_df.iloc[index, 6] : cellpose_df.iloc[index, 8],
71
+ ].copy()
72
+ single_cell_mask = cellpose_df.iloc[index, 9]
73
+ single_cell_img[~single_cell_mask] = 0
74
+ nucleus_single_cell_img[~single_cell_mask] = 0
75
+
76
+ props_nuc_single = regionprops_table(
77
+ nucleus_single_cell_img,
78
+ intensity_image=single_cell_img,
79
+ properties=[
80
+ "label",
81
+ "area",
82
+ "centroid",
83
+ "eccentricity",
84
+ "bbox",
85
+ "image",
86
+ "perimeter",
87
+ ],
88
+ )
89
+ df_nuc_single = pd.DataFrame(props_nuc_single)
90
+ return single_cell_img, nucleus_single_cell_img, single_cell_mask, df_nuc_single
91
+
92
+
93
+ @st.experimental_memo
94
+ def single_cell_analysis(
95
+ single_cell_img,
96
+ single_cell_mask,
97
+ df_nuc_single,
98
+ x_fiber,
99
+ y_fiber,
100
+ internalised_threshold=0.75,
101
+ ):
102
+ n_nuc, n_nuc_intern, n_nuc_periph = 0, 0, 0
103
+ for _, value in df_nuc_single.iterrows():
104
+ n_nuc += 1
105
+ # Extend line and find closest point
106
+ m, b = line_equation(x_fiber, y_fiber, value[3], value[2])
107
+
108
+ intersections_lst = calculate_intersection(
109
+ m, b, (single_cell_img.shape[0], single_cell_img.shape[1])
110
+ )
111
+ border_point = calculate_closest_point(value[3], value[2], intersections_lst)
112
+ rr, cc = line(
113
+ int(y_fiber),
114
+ int(x_fiber),
115
+ int(border_point[1]),
116
+ int(border_point[0]),
117
+ )
118
+ for index3, coords in enumerate(list(zip(rr, cc))):
119
+ try:
120
+ if single_cell_mask[coords] == 0:
121
+ dist_nuc_cent = calculate_distance(
122
+ x_fiber, y_fiber, value[3], value[2]
123
+ )
124
+ dist_out_of_fiber = calculate_distance(
125
+ x_fiber, y_fiber, coords[1], coords[0]
126
+ )
127
+ ratio_dist = dist_nuc_cent / dist_out_of_fiber
128
+ if ratio_dist < internalised_threshold:
129
+ n_nuc_intern += 1
130
+ else:
131
+ n_nuc_periph += 1
132
+ break
133
+ except IndexError:
134
+ coords = list(zip(rr, cc))[index3 - 1]
135
+ dist_nuc_cent = calculate_distance(x_fiber, y_fiber, value[3], value[2])
136
+ dist_out_of_fiber = calculate_distance(
137
+ x_fiber, y_fiber, coords[1], coords[0]
138
+ )
139
+ ratio_dist = dist_nuc_cent / dist_out_of_fiber
140
+ if ratio_dist < internalised_threshold:
141
+ n_nuc_intern += 1
142
+ else:
143
+ n_nuc_periph += 1
144
+ break
145
+
146
+ return n_nuc, n_nuc_intern, n_nuc_periph
147
+
148
+
149
+ @st.experimental_memo
150
+ def predict_all_cells(
151
+ histo_img, cellpose_df, mask_stardist, internalised_threshold=0.75
152
+ ):
153
+ list_n_nuc, list_n_nuc_intern, list_n_nuc_periph = [], [], []
154
+ for index in range(len(cellpose_df)):
155
+ (
156
+ single_cell_img,
157
+ _,
158
+ single_cell_mask,
159
+ df_nuc_single,
160
+ ) = extract_ROIs(histo_img, index, cellpose_df, mask_stardist)
161
+ x_fiber = cellpose_df.iloc[index, 3] - cellpose_df.iloc[index, 6]
162
+ y_fiber = cellpose_df.iloc[index, 2] - cellpose_df.iloc[index, 5]
163
+ n_nuc, n_nuc_intern, n_nuc_periph = single_cell_analysis(
164
+ single_cell_img, single_cell_mask, df_nuc_single, x_fiber, y_fiber
165
+ )
166
+ list_n_nuc.append(n_nuc)
167
+ list_n_nuc_intern.append(n_nuc_intern)
168
+ list_n_nuc_periph.append(n_nuc_periph)
169
+ df_nuc_analysis = pd.DataFrame(
170
+ list(zip(list_n_nuc, list_n_nuc_intern, list_n_nuc_periph)),
171
+ columns=["N° Nuc", "N° Nuc Intern", "N° Nuc Periph"],
172
+ )
173
+ return df_nuc_analysis
174
+
175
+
176
+ @st.experimental_memo
177
+ def predict_single_cell(histo_img, cellpose_df, mask_stardist):
178
+ pass
179
+
180
+
181
+ @st.experimental_memo
182
+ def paint_histo_img(histo_img, cellpose_df, prediction_df):
183
+ paint_img = np.zeros((histo_img.shape[0], histo_img.shape[1]), dtype=np.uint8)
184
+ for index in range(len(cellpose_df)):
185
+ single_cell_mask = cellpose_df.iloc[index, 9].copy()
186
+ if prediction_df.iloc[index, 1] == 0:
187
+ paint_img[
188
+ cellpose_df.iloc[index, 5] : cellpose_df.iloc[index, 7],
189
+ cellpose_df.iloc[index, 6] : cellpose_df.iloc[index, 8],
190
+ ][single_cell_mask] = 1
191
+ elif prediction_df.iloc[index, 1] > 0:
192
+ paint_img[
193
+ cellpose_df.iloc[index, 5] : cellpose_df.iloc[index, 7],
194
+ cellpose_df.iloc[index, 6] : cellpose_df.iloc[index, 8],
195
+ ][single_cell_mask] = 2
196
+ return paint_img
197
+
198
+
199
+ with st.sidebar:
200
+ st.write("Models Parameters")
201
+ nms_thresh = st.slider("Stardist NMS Tresh", 0.0, 1.0, 0.4, 0.1)
202
+ prob_thresh = st.slider("Stardist Prob Tresh", 0.5, 1.0, 0.5, 0.05)
203
+
204
+ model_cellpose = load_cellpose()
205
+ model_stardist = load_stardist()
206
+
207
+ st.title("HE Staining Analysis")
208
+ st.write(
209
+ "This demo will automatically detect cells and nucleus in the image and try to quantify a certain number of features."
210
+ )
211
+ st.write("Upload your HE Staining image")
212
+ uploaded_file = st.file_uploader("Choose a file")
213
+
214
+ if uploaded_file is not None:
215
+ image_ndarray = imread(uploaded_file)
216
+ st.write("Raw Image")
217
+ image = st.image(uploaded_file)
218
+
219
+ mask_cellpose = run_cellpose(image_ndarray)
220
+ mask_stardist = run_stardist(image_ndarray, nms_thresh, prob_thresh)
221
+ mask_stardist_copy = mask_stardist.copy()
222
+
223
+ st.header("Segmentation Results")
224
+ st.subheader("CellPose and Stardist overlayed results")
225
+ fig, ax = plt.subplots(1, 1)
226
+ ax.imshow(mask_cellpose, cmap="viridis")
227
+ lbl_cmap = random_label_cmap()
228
+ ax.imshow(mask_stardist, cmap=lbl_cmap, alpha=0.5)
229
+ ax.axis("off")
230
+ st.pyplot(fig)
231
+
232
+ st.subheader("All cells detected by CellPose")
233
+ props_cellpose = regionprops_table(
234
+ mask_cellpose,
235
+ properties=[
236
+ "label",
237
+ "area",
238
+ "centroid",
239
+ "eccentricity",
240
+ "bbox",
241
+ "image",
242
+ "perimeter",
243
+ ],
244
+ )
245
+ df_cellpose = pd.DataFrame(props_cellpose)
246
+ st.dataframe(df_cellpose.drop("image", axis=1))
247
+
248
+ st.header("Full Nucleus Analysis Results")
249
+ df_nuc_analysis = predict_all_cells(image_ndarray, df_cellpose, mask_stardist)
250
+ st.dataframe(df_nuc_analysis)
251
+ st.write("Total number of nucleus : ", df_nuc_analysis["N° Nuc"].sum())
252
+ st.write(
253
+ "Total number of internalized nucleus : ",
254
+ df_nuc_analysis["N° Nuc Intern"].sum(),
255
+ " (",
256
+ round(
257
+ 100
258
+ * df_nuc_analysis["N° Nuc Intern"].sum()
259
+ / df_nuc_analysis["N° Nuc"].sum(),
260
+ 2,
261
+ ),
262
+ "%)",
263
+ )
264
+ st.write(
265
+ "Total number of peripherical nucleus : ",
266
+ df_nuc_analysis["N° Nuc Periph"].sum(),
267
+ " (",
268
+ round(
269
+ 100
270
+ * df_nuc_analysis["N° Nuc Periph"].sum()
271
+ / df_nuc_analysis["N° Nuc"].sum(),
272
+ 2,
273
+ ),
274
+ "%)",
275
+ )
276
+ st.write(
277
+ "Number of cell with at least one internalized nucleus : ",
278
+ df_nuc_analysis["N° Nuc Intern"].astype(bool).sum(axis=0),
279
+ " (",
280
+ round(
281
+ 100
282
+ * df_nuc_analysis["N° Nuc Intern"].astype(bool).sum(axis=0)
283
+ / len(df_nuc_analysis),
284
+ 2,
285
+ ),
286
+ "%)",
287
+ )
288
+ st.header("Single Nucleus Analysis Details")
289
+ selected_fiber = st.selectbox("Select a cell", list(range(len(df_cellpose))))
290
+ selected_fiber = int(selected_fiber)
291
+ single_cell_img = image_ndarray[
292
+ df_cellpose.iloc[selected_fiber, 5] : df_cellpose.iloc[selected_fiber, 7],
293
+ df_cellpose.iloc[selected_fiber, 6] : df_cellpose.iloc[selected_fiber, 8],
294
+ ]
295
+ nucleus_single_cell_img = mask_stardist_copy[
296
+ df_cellpose.iloc[selected_fiber, 5] : df_cellpose.iloc[selected_fiber, 7],
297
+ df_cellpose.iloc[selected_fiber, 6] : df_cellpose.iloc[selected_fiber, 8],
298
+ ]
299
+ single_cell_mask = df_cellpose.iloc[selected_fiber, 9]
300
+ single_cell_img[~single_cell_mask] = 0
301
+ nucleus_single_cell_img[~single_cell_mask] = 0
302
+
303
+ props_nuc_single = regionprops_table(
304
+ nucleus_single_cell_img,
305
+ intensity_image=single_cell_img,
306
+ properties=[
307
+ "label",
308
+ "area",
309
+ "centroid",
310
+ "eccentricity",
311
+ "bbox",
312
+ "image",
313
+ "perimeter",
314
+ ],
315
+ )
316
+ df_nuc_single = pd.DataFrame(props_nuc_single)
317
+ st.markdown(
318
+ """
319
+ * White point represent cell centroid.
320
+ * Green point represent nucleus centroid. Green dashed line represent the fiber centrer - nucleus distance.
321
+ * Red point represent the cell border from a straight line between the cell centroid and the nucleus centroid. The red dashed line represent distance between the nucelus and the cell border.
322
+ * The periphery ratio is calculated by the division of the distance centroid - nucleus and the distance centroid - cell border."""
323
+ )
324
+ fig2, (ax1, ax2, ax3) = plt.subplots(1, 3)
325
+ ax1.imshow(single_cell_img)
326
+ ax2.imshow(nucleus_single_cell_img, cmap="viridis")
327
+ # Plot Fiber centroid
328
+ x_fiber = df_cellpose.iloc[selected_fiber, 3] - df_cellpose.iloc[selected_fiber, 6]
329
+ y_fiber = df_cellpose.iloc[selected_fiber, 2] - df_cellpose.iloc[selected_fiber, 5]
330
+ ax3.scatter(x_fiber, y_fiber, color="white")
331
+ # Plot nucleus centroid
332
+ for index, value in df_nuc_single.iterrows():
333
+ ax3.scatter(value[3], value[2], color="blue", s=2)
334
+ # Extend line and find closest point
335
+ m, b = line_equation(x_fiber, y_fiber, value[3], value[2])
336
+
337
+ intersections_lst = calculate_intersection(
338
+ m, b, (single_cell_img.shape[0], single_cell_img.shape[1])
339
+ )
340
+ border_point = calculate_closest_point(value[3], value[2], intersections_lst)
341
+ ax3.plot(
342
+ (x_fiber, border_point[0]),
343
+ (y_fiber, border_point[1]),
344
+ "ro--",
345
+ linewidth=1,
346
+ markersize=1,
347
+ )
348
+ ax3.plot(
349
+ (x_fiber, value[3]),
350
+ (y_fiber, value[2]),
351
+ "go--",
352
+ linewidth=1,
353
+ markersize=1,
354
+ )
355
+
356
+ rr, cc = line(
357
+ int(y_fiber),
358
+ int(x_fiber),
359
+ int(border_point[1]),
360
+ int(border_point[0]),
361
+ )
362
+ for index, coords in enumerate(list(zip(rr, cc))):
363
+ try:
364
+ if single_cell_mask[coords] == 0:
365
+ dist_nuc_cent = calculate_distance(
366
+ x_fiber, y_fiber, value[3], value[2]
367
+ )
368
+ dist_out_of_fiber = calculate_distance(
369
+ x_fiber, y_fiber, coords[1], coords[0]
370
+ )
371
+ ratio_dist = dist_nuc_cent / dist_out_of_fiber
372
+ ax3.scatter(coords[1], coords[0], color="red", s=10)
373
+ break
374
+ except IndexError:
375
+ coords = list(zip(rr, cc))[index - 1]
376
+ dist_nuc_cent = calculate_distance(x_fiber, y_fiber, value[3], value[2])
377
+ dist_out_of_fiber = calculate_distance(
378
+ x_fiber, y_fiber, coords[1], coords[0]
379
+ )
380
+ ratio_dist = dist_nuc_cent / dist_out_of_fiber
381
+ ax3.scatter(coords[1], coords[0], color="red", s=10)
382
+ break
383
+
384
+ st.write("Nucleus #{} has a periphery ratio of: {}".format(index, ratio_dist))
385
+ ax3.imshow(single_cell_img)
386
+ ax3.imshow(nucleus_single_cell_img, cmap="viridis", alpha=0.5)
387
+ ax1.axis("off")
388
+ ax2.axis("off")
389
+ ax3.axis("off")
390
+ st.pyplot(fig2)
391
+
392
+ st.subheader("All nucleus inside selected cell")
393
+
394
+ st.dataframe(df_nuc_single.drop("image", axis=1))
395
+
396
+ st.header("Painted predicted image")
397
+ st.write(
398
+ "Green color indicates cells with only peripherical nuclei, red color indicates cells with at least one internal nucleus."
399
+ )
400
+ painted_img = paint_histo_img(image_ndarray, df_cellpose, df_nuc_analysis)
401
+ fig3, ax3 = plt.subplots(1, 1)
402
+ cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
403
+ "", ["white", "green", "red"]
404
+ )
405
+ ax3.imshow(image_ndarray)
406
+ ax3.imshow(painted_img, cmap=cmap, alpha=0.5)
407
+ ax3.axis("off")
408
+ st.pyplot(fig3)
pages/2_SDH_Staining_Analysis.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from cellpose.core import use_gpu
3
+ from cellpose.models import Cellpose
4
+
5
+ try:
6
+ from imageio.v2 import imread
7
+ except:
8
+ from imageio import imread
9
+ from skimage.measure import regionprops_table
10
+ import pandas as pd
11
+ import matplotlib
12
+ import matplotlib.pyplot as plt
13
+ from stardist import random_label_cmap
14
+ import tensorflow as tf
15
+ from tensorflow.config import list_physical_devices
16
+ from tensorflow import keras
17
+
18
+ from gradcam import *
19
+ from os import path
20
+ import urllib.request
21
+ from random_brightness import *
22
+
23
+ labels_predict = ["control", "sick"]
24
+
25
+ tf.random.set_seed(42)
26
+ np.random.seed(42)
27
+
28
+ st.set_page_config(
29
+ page_title="MyoQuant SDH Analysis",
30
+ page_icon="🔬",
31
+ )
32
+
33
+ if path.exists("model.h5"):
34
+ st.success("SDH Model ready to use !")
35
+ pass
36
+ else:
37
+ with st.spinner("Please wait we are downloading the SDH Model."):
38
+ urllib.request.urlretrieve(
39
+ "https://lbgi.fr/~meyer/SDH_models/model.h5", "model.h5"
40
+ )
41
+ st.success("SDH Model have been downloaded !")
42
+
43
+ if len(list_physical_devices("GPU")) >= 1:
44
+ use_GPU = True
45
+ else:
46
+ use_GPU = False
47
+
48
+
49
+ @st.experimental_singleton
50
+ def load_cellpose():
51
+ model_c = Cellpose(gpu=use_GPU, model_type="cyto2")
52
+ return model_c
53
+
54
+
55
+ @st.experimental_singleton
56
+ def load_sdh_model():
57
+ model_sdh = keras.models.load_model(
58
+ "model.h5", custom_objects={"RandomBrightness": RandomBrightness}
59
+ )
60
+ return model_sdh
61
+
62
+
63
+ @st.experimental_memo
64
+ def run_cellpose(image):
65
+ channel = [[0, 0]]
66
+ mask_cellpose, flow, style, diam = model_cellpose.eval(
67
+ image, diameter=None, channels=channel
68
+ )
69
+ return mask_cellpose
70
+
71
+
72
+ @st.experimental_memo
73
+ def predict_single_cell(single_cell_img, _model_SDH):
74
+ img_array = np.empty((1, 256, 256, 3))
75
+ img_array[0] = tf.image.resize(single_cell_img, (256, 256))
76
+ prediction = _model_SDH.predict(img_array)
77
+ predicted_class = prediction.argmax()
78
+ predicted_proba = round(np.amax(prediction), 2)
79
+ heatmap = make_gradcam_heatmap(
80
+ img_array, _model_SDH.get_layer("resnet50v2"), "conv5_block3_3_conv"
81
+ )
82
+ grad_cam_img = save_and_display_gradcam(img_array[0], heatmap)
83
+ return grad_cam_img, predicted_class, predicted_proba
84
+
85
+
86
+ @st.experimental_memo
87
+ def resize_batch_cells(histo_img, cellpose_df):
88
+ img_array_full = np.empty((len(cellpose_df), 256, 256, 3))
89
+ for index in range(len(cellpose_df)):
90
+ single_cell_img = histo_img[
91
+ cellpose_df.iloc[index, 5] : cellpose_df.iloc[index, 7],
92
+ cellpose_df.iloc[index, 6] : cellpose_df.iloc[index, 8],
93
+ ].copy()
94
+
95
+ single_cell_mask = cellpose_df.iloc[index, 9].copy()
96
+ single_cell_img[~single_cell_mask] = 0
97
+
98
+ img_array_full[index] = tf.image.resize(single_cell_img, (256, 256))
99
+ return img_array_full
100
+
101
+
102
+ @st.experimental_memo
103
+ def predict_all_cells(histo_img, cellpose_df, _model_SDH):
104
+ predicted_class_array = np.empty((len(cellpose_df)))
105
+ predicted_proba_array = np.empty((len(cellpose_df)))
106
+ img_array_full = resize_batch_cells(histo_img, cellpose_df)
107
+ prediction = _model_SDH.predict(img_array_full)
108
+ index_counter = 0
109
+ for prediction_result in prediction:
110
+ predicted_class_array[index_counter] = prediction_result.argmax()
111
+ predicted_proba_array[index_counter] = np.amax(prediction_result)
112
+ index_counter += 1
113
+ return predicted_class_array, predicted_proba_array
114
+
115
+
116
+ @st.experimental_memo
117
+ def paint_full_image(image_sdh, df_cellpose, class_predicted_all):
118
+ image_sdh_paint = np.zeros((image_sdh.shape[0], image_sdh.shape[1]), dtype=np.uint8)
119
+ for index in range(len(df_cellpose)):
120
+ single_cell_mask = df_cellpose.iloc[index, 9].copy()
121
+ if class_predicted_all[index] == 0:
122
+ image_sdh_paint[
123
+ df_cellpose.iloc[index, 5] : df_cellpose.iloc[index, 7],
124
+ df_cellpose.iloc[index, 6] : df_cellpose.iloc[index, 8],
125
+ ][single_cell_mask] = 1
126
+ elif class_predicted_all[index] == 1:
127
+ image_sdh_paint[
128
+ df_cellpose.iloc[index, 5] : df_cellpose.iloc[index, 7],
129
+ df_cellpose.iloc[index, 6] : df_cellpose.iloc[index, 8],
130
+ ][single_cell_mask] = 2
131
+ return image_sdh_paint
132
+
133
+
134
+ model_cellpose = load_cellpose()
135
+
136
+ model_SDH = load_sdh_model()
137
+
138
+ st.title("SDH Staining Analysis")
139
+ st.write(
140
+ "This demo will automatically detect cells classify the SDH stained cell as sick or healthy using our deep-learning model."
141
+ )
142
+ st.write("Upload your SDH Staining image")
143
+ uploaded_file_sdh = st.file_uploader("Choose a file")
144
+
145
+ if uploaded_file_sdh is not None:
146
+ image_ndarray_sdh = imread(uploaded_file_sdh)
147
+
148
+ st.write("Raw Image")
149
+ image = st.image(uploaded_file_sdh)
150
+
151
+ mask_cellpose = run_cellpose(image_ndarray_sdh)
152
+
153
+ st.header("Segmentation Results")
154
+ st.subheader("CellPose results")
155
+ fig, ax = plt.subplots(1, 1)
156
+ ax.imshow(mask_cellpose, cmap="viridis")
157
+ ax.axis("off")
158
+ st.pyplot(fig)
159
+
160
+ st.subheader("All cells detected by CellPose")
161
+
162
+ props_cellpose = regionprops_table(
163
+ mask_cellpose,
164
+ properties=[
165
+ "label",
166
+ "area",
167
+ "centroid",
168
+ "eccentricity",
169
+ "bbox",
170
+ "image",
171
+ "perimeter",
172
+ ],
173
+ )
174
+ df_cellpose = pd.DataFrame(props_cellpose)
175
+ st.dataframe(df_cellpose.drop("image", axis=1))
176
+
177
+ st.header("SDH Cell Classification Results")
178
+
179
+ class_predicted_all, proba_predicted_all = predict_all_cells(
180
+ image_ndarray_sdh, df_cellpose, model_SDH
181
+ )
182
+
183
+ count_per_label = np.unique(class_predicted_all, return_counts=True)
184
+ class_and_proba_df = pd.DataFrame(
185
+ list(zip(class_predicted_all, proba_predicted_all)),
186
+ columns=["class", "proba"],
187
+ )
188
+ class_and_proba_df
189
+ st.write("Total number of cells detected: ", len(class_predicted_all))
190
+ for elem in count_per_label[0]:
191
+ st.write(
192
+ "Number of cells classified as ",
193
+ labels_predict[int(elem)],
194
+ ": ",
195
+ count_per_label[1][int(elem)],
196
+ " ",
197
+ 100 * count_per_label[1][int(elem)] / len(class_predicted_all),
198
+ "%",
199
+ )
200
+
201
+ st.header("Single Cell Grad-CAM")
202
+ selected_fiber = st.selectbox("Select a cell", list(range(len(df_cellpose))))
203
+ selected_fiber = int(selected_fiber)
204
+ single_cell_img = image_ndarray_sdh[
205
+ df_cellpose.iloc[selected_fiber, 5] : df_cellpose.iloc[selected_fiber, 7],
206
+ df_cellpose.iloc[selected_fiber, 6] : df_cellpose.iloc[selected_fiber, 8],
207
+ ].copy()
208
+
209
+ single_cell_mask = df_cellpose.iloc[selected_fiber, 9].copy()
210
+ single_cell_img[~single_cell_mask] = 0
211
+
212
+ grad_img, class_predicted, proba_predicted = predict_single_cell(
213
+ single_cell_img, model_SDH
214
+ )
215
+
216
+ fig2, (ax1, ax2) = plt.subplots(1, 2)
217
+ resized_single_cell_img = tf.image.resize(single_cell_img, (256, 256))
218
+ ax1.imshow(single_cell_img)
219
+ ax2.imshow(grad_img)
220
+ ax1.axis("off")
221
+ # ax2.axis("off")
222
+
223
+ xlabel = (
224
+ labels_predict[int(class_predicted)]
225
+ + " ("
226
+ + str(round(proba_predicted, 2))
227
+ + ")"
228
+ )
229
+ ax2.set_xlabel(xlabel)
230
+ st.pyplot(fig2)
231
+
232
+ st.header("Painted predicted image")
233
+ st.write(
234
+ "Green color indicates cells classified as control, red color indicates cells classified as sick"
235
+ )
236
+ paint_img = paint_full_image(image_ndarray_sdh, df_cellpose, class_predicted_all)
237
+ fig3, ax3 = plt.subplots(1, 1)
238
+ cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
239
+ "", ["white", "green", "red"]
240
+ )
241
+ ax3.imshow(image_ndarray_sdh)
242
+ ax3.imshow(paint_img, cmap=cmap, alpha=0.5)
243
+ ax3.axis("off")
244
+ st.pyplot(fig3)
random_brightness.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @title Random Brightness Layer
2
+ import tensorflow as tf
3
+ from keras import backend
4
+ from keras.engine import base_layer
5
+ from keras.engine import base_preprocessing_layer
6
+ from keras.layers.preprocessing import preprocessing_utils as utils
7
+ from keras.utils import tf_utils
8
+
9
+ from tensorflow.python.ops import stateless_random_ops
10
+ from tensorflow.python.util.tf_export import keras_export
11
+ from tensorflow.tools.docs import doc_controls
12
+
13
+
14
+ @keras_export("keras.__internal__.layers.BaseImageAugmentationLayer")
15
+ class BaseImageAugmentationLayer(base_layer.BaseRandomLayer):
16
+ """Abstract base layer for image augmentaion.
17
+ This layer contains base functionalities for preprocessing layers which
18
+ augment image related data, eg. image and in future, label and bounding boxes.
19
+ The subclasses could avoid making certain mistakes and reduce code
20
+ duplications.
21
+ This layer requires you to implement one method: `augment_image()`, which
22
+ augments one single image during the training. There are a few additional
23
+ methods that you can implement for added functionality on the layer:
24
+ `augment_label()`, which handles label augmentation if the layer supports
25
+ that.
26
+ `augment_bounding_box()`, which handles the bounding box augmentation, if the
27
+ layer supports that.
28
+ `get_random_transformation()`, which should produce a random transformation
29
+ setting. The tranformation object, which could be any type, will be passed to
30
+ `augment_image`, `augment_label` and `augment_bounding_box`, to coodinate
31
+ the randomness behavior, eg, in the RandomFlip layer, the image and
32
+ bounding_box should be changed in the same way.
33
+ The `call()` method support two formats of inputs:
34
+ 1. Single image tensor with 3D (HWC) or 4D (NHWC) format.
35
+ 2. A dict of tensors with stable keys. The supported keys are:
36
+ `"images"`, `"labels"` and `"bounding_boxes"` at the moment. We might add
37
+ more keys in future when we support more types of augmentation.
38
+ The output of the `call()` will be in two formats, which will be the same
39
+ structure as the inputs.
40
+ The `call()` will handle the logic detecting the training/inference
41
+ mode, unpack the inputs, forward to the correct function, and pack the output
42
+ back to the same structure as the inputs.
43
+ By default the `call()` method leverages the `tf.vectorized_map()` function.
44
+ Auto-vectorization can be disabled by setting `self.auto_vectorize = False`
45
+ in your `__init__()` method. When disabled, `call()` instead relies
46
+ on `tf.map_fn()`. For example:
47
+ ```python
48
+ class SubclassLayer(BaseImageAugmentationLayer):
49
+ def __init__(self):
50
+ super().__init__()
51
+ self.auto_vectorize = False
52
+ ```
53
+ Example:
54
+ ```python
55
+ class RandomContrast(BaseImageAugmentationLayer):
56
+ def __init__(self, factor=(0.5, 1.5), **kwargs):
57
+ super().__init__(**kwargs)
58
+ self._factor = factor
59
+ def augment_image(self, image, transformation=None):
60
+ random_factor = tf.random.uniform([], self._factor[0], self._factor[1])
61
+ mean = tf.math.reduced_mean(inputs, axis=-1, keep_dim=True)
62
+ return (inputs - mean) * random_factor + mean
63
+ ```
64
+ Note that since the randomness is also a common functionnality, this layer
65
+ also includes a tf.keras.backend.RandomGenerator, which can be used to produce
66
+ the random numbers. The random number generator is stored in the
67
+ `self._random_generator` attribute.
68
+ """
69
+
70
+ def __init__(self, rate=1.0, seed=None, **kwargs):
71
+ super().__init__(seed=seed, **kwargs)
72
+ self.rate = rate
73
+
74
+ @property
75
+ def auto_vectorize(self):
76
+ """Control whether automatic vectorization occurs.
77
+ By default the `call()` method leverages the `tf.vectorized_map()` function.
78
+ Auto-vectorization can be disabled by setting `self.auto_vectorize = False`
79
+ in your `__init__()` method. When disabled, `call()` instead relies
80
+ on `tf.map_fn()`. For example:
81
+ ```python
82
+ class SubclassLayer(BaseImageAugmentationLayer):
83
+ def __init__(self):
84
+ super().__init__()
85
+ self.auto_vectorize = False
86
+ ```
87
+ """
88
+ return getattr(self, "_auto_vectorize", True)
89
+
90
+ @auto_vectorize.setter
91
+ def auto_vectorize(self, auto_vectorize):
92
+ self._auto_vectorize = auto_vectorize
93
+
94
+ @property
95
+ def _map_fn(self):
96
+ if self.auto_vectorize:
97
+ return tf.vectorized_map
98
+ else:
99
+ return tf.map_fn
100
+
101
+ @doc_controls.for_subclass_implementers
102
+ def augment_image(self, image, transformation=None):
103
+ """Augment a single image during training.
104
+ Args:
105
+ image: 3D image input tensor to the layer. Forwarded from `layer.call()`.
106
+ transformation: The transformation object produced by
107
+ `get_random_transformation`. Used to coordinate the randomness between
108
+ image, label and bounding box.
109
+ Returns:
110
+ output 3D tensor, which will be forward to `layer.call()`.
111
+ """
112
+ raise NotImplementedError()
113
+
114
+ @doc_controls.for_subclass_implementers
115
+ def augment_label(self, label, transformation=None):
116
+ """Augment a single label during training.
117
+ Args:
118
+ label: 1D label to the layer. Forwarded from `layer.call()`.
119
+ transformation: The transformation object produced by
120
+ `get_random_transformation`. Used to coordinate the randomness between
121
+ image, label and bounding box.
122
+ Returns:
123
+ output 1D tensor, which will be forward to `layer.call()`.
124
+ """
125
+ raise NotImplementedError()
126
+
127
+ @doc_controls.for_subclass_implementers
128
+ def augment_bounding_box(self, bounding_box, transformation=None):
129
+ """Augment bounding boxes for one image during training.
130
+ Args:
131
+ bounding_box: 2D bounding boxes to the layer. Forwarded from `call()`.
132
+ transformation: The transformation object produced by
133
+ `get_random_transformation`. Used to coordinate the randomness between
134
+ image, label and bounding box.
135
+ Returns:
136
+ output 2D tensor, which will be forward to `layer.call()`.
137
+ """
138
+ raise NotImplementedError()
139
+
140
+ @doc_controls.for_subclass_implementers
141
+ def get_random_transformation(self, image=None, label=None, bounding_box=None):
142
+ """Produce random transformation config for one single input.
143
+ This is used to produce same randomness between image/label/bounding_box.
144
+ Args:
145
+ image: 3D image tensor from inputs.
146
+ label: optional 1D label tensor from inputs.
147
+ bounding_box: optional 2D bounding boxes tensor from inputs.
148
+ Returns:
149
+ Any type of object, which will be forwarded to `augment_image`,
150
+ `augment_label` and `augment_bounding_box` as the `transformation`
151
+ parameter.
152
+ """
153
+ return None
154
+
155
+ def call(self, inputs, training=True):
156
+ inputs = self._ensure_inputs_are_compute_dtype(inputs)
157
+ if training:
158
+ inputs, is_dict = self._format_inputs(inputs)
159
+ images = inputs["images"]
160
+ if images.shape.rank == 3:
161
+ return self._format_output(self._augment(inputs), is_dict)
162
+ elif images.shape.rank == 4:
163
+ return self._format_output(self._batch_augment(inputs), is_dict)
164
+ else:
165
+ raise ValueError(
166
+ "Image augmentation layers are expecting inputs to be "
167
+ "rank 3 (HWC) or 4D (NHWC) tensors. Got shape: "
168
+ f"{images.shape}"
169
+ )
170
+ else:
171
+ return inputs
172
+
173
+ def _augment(self, inputs):
174
+ image = inputs.get("images", None)
175
+ label = inputs.get("labels", None)
176
+ bounding_box = inputs.get("bounding_boxes", None)
177
+ transformation = self.get_random_transformation(
178
+ image=image, label=label, bounding_box=bounding_box
179
+ ) # pylint: disable=assignment-from-none
180
+ image = self.augment_image(image, transformation=transformation)
181
+ result = {"images": image}
182
+ if label is not None:
183
+ label = self.augment_label(label, transformation=transformation)
184
+ result["labels"] = label
185
+ if bounding_box is not None:
186
+ bounding_box = self.augment_bounding_box(
187
+ bounding_box, transformation=transformation
188
+ )
189
+ result["bounding_boxes"] = bounding_box
190
+ return result
191
+
192
+ def _batch_augment(self, inputs):
193
+ return self._map_fn(self._augment, inputs)
194
+
195
+ def _format_inputs(self, inputs):
196
+ if tf.is_tensor(inputs):
197
+ # single image input tensor
198
+ return {"images": inputs}, False
199
+ elif isinstance(inputs, dict):
200
+ # TODO(scottzhu): Check if it only contains the valid keys
201
+ return inputs, True
202
+ else:
203
+ raise ValueError(
204
+ f"Expect the inputs to be image tensor or dict. Got {inputs}"
205
+ )
206
+
207
+ def _format_output(self, output, is_dict):
208
+ if not is_dict:
209
+ return output["images"]
210
+ else:
211
+ return output
212
+
213
+ def _ensure_inputs_are_compute_dtype(self, inputs):
214
+ if isinstance(inputs, dict):
215
+ inputs["images"] = utils.ensure_tensor(inputs["images"], self.compute_dtype)
216
+ else:
217
+ inputs = utils.ensure_tensor(inputs, self.compute_dtype)
218
+ return inputs
219
+
220
+
221
+ @keras_export("keras.layers.RandomBrightness", v1=[])
222
+ class RandomBrightness(BaseImageAugmentationLayer):
223
+ """A preprocessing layer which randomly adjusts brightness during training.
224
+ This layer will randomly increase/reduce the brightness for the input RGB
225
+ images. At inference time, the output will be identical to the input.
226
+ Call the layer with `training=True` to adjust the brightness of the input.
227
+ Note that different brightness adjustment factors
228
+ will be apply to each the images in the batch.
229
+ For an overview and full list of preprocessing layers, see the preprocessing
230
+ [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers).
231
+ Args:
232
+ factor: Float or a list/tuple of 2 floats between -1.0 and 1.0. The
233
+ factor is used to determine the lower bound and upper bound of the
234
+ brightness adjustment. A float value will be chosen randomly between
235
+ the limits. When -1.0 is chosen, the output image will be black, and
236
+ when 1.0 is chosen, the image will be fully white. When only one float
237
+ is provided, eg, 0.2, then -0.2 will be used for lower bound and 0.2
238
+ will be used for upper bound.
239
+ value_range: Optional list/tuple of 2 floats for the lower and upper limit
240
+ of the values of the input data. Defaults to [0.0, 255.0]. Can be changed
241
+ to e.g. [0.0, 1.0] if the image input has been scaled before this layer.
242
+ The brightness adjustment will be scaled to this range, and the
243
+ output values will be clipped to this range.
244
+ seed: optional integer, for fixed RNG behavior.
245
+ Inputs: 3D (HWC) or 4D (NHWC) tensor, with float or int dtype. Input pixel
246
+ values can be of any range (e.g. `[0., 1.)` or `[0, 255]`)
247
+ Output: 3D (HWC) or 4D (NHWC) tensor with brightness adjusted based on the
248
+ `factor`. By default, the layer will output floats. The output value will
249
+ be clipped to the range `[0, 255]`, the valid range of RGB colors, and
250
+ rescaled based on the `value_range` if needed.
251
+ Sample usage:
252
+ ```python
253
+ random_bright = tf.keras.layers.RandomBrightness(factor=0.2)
254
+ # An image with shape [2, 2, 3]
255
+ image = [[[1, 2, 3], [4 ,5 ,6]], [[7, 8, 9], [10, 11, 12]]]
256
+ # Assume we randomly select the factor to be 0.1, then it will apply
257
+ # 0.1 * 255 to all the channel
258
+ output = random_bright(image, training=True)
259
+ # output will be int64 with 25.5 added to each channel and round down.
260
+ tf.Tensor([[[26.5, 27.5, 28.5]
261
+ [29.5, 30.5, 31.5]]
262
+ [[32.5, 33.5, 34.5]
263
+ [35.5, 36.5, 37.5]]],
264
+ shape=(2, 2, 3), dtype=int64)
265
+ ```
266
+ """
267
+
268
+ _FACTOR_VALIDATION_ERROR = (
269
+ "The `factor` argument should be a number (or a list of two numbers) "
270
+ "in the range [-1.0, 1.0]. "
271
+ )
272
+ _VALUE_RANGE_VALIDATION_ERROR = (
273
+ "The `value_range` argument should be a list of two numbers. "
274
+ )
275
+
276
+ def __init__(self, factor, value_range=(0, 255), seed=None, **kwargs):
277
+ base_preprocessing_layer.keras_kpl_gauge.get_cell("RandomBrightness").set(True)
278
+ super().__init__(seed=seed, force_generator=True, **kwargs)
279
+ self._set_factor(factor)
280
+ self._set_value_range(value_range)
281
+ self._seed = seed
282
+
283
+ def augment_image(self, image, transformation=None):
284
+ return self._brightness_adjust(image, transformation["rgb_delta"])
285
+
286
+ def augment_label(self, label, transformation=None):
287
+ return label
288
+
289
+ def get_random_transformation(self, image=None, label=None, bounding_box=None):
290
+ rgb_delta_shape = (1, 1, 1)
291
+ random_rgb_delta = self._random_generator.random_uniform(
292
+ shape=rgb_delta_shape,
293
+ minval=self._factor[0],
294
+ maxval=self._factor[1],
295
+ )
296
+ random_rgb_delta = random_rgb_delta * (
297
+ self._value_range[1] - self._value_range[0]
298
+ )
299
+ return {"rgb_delta": random_rgb_delta}
300
+
301
+ def _set_value_range(self, value_range):
302
+ if not isinstance(value_range, (tuple, list)):
303
+ raise ValueError(self._VALUE_RANGE_VALIDATION_ERROR + f"Got {value_range}")
304
+ if len(value_range) != 2:
305
+ raise ValueError(self._VALUE_RANGE_VALIDATION_ERROR + f"Got {value_range}")
306
+ self._value_range = sorted(value_range)
307
+
308
+ def _set_factor(self, factor):
309
+ if isinstance(factor, (tuple, list)):
310
+ if len(factor) != 2:
311
+ raise ValueError(self._FACTOR_VALIDATION_ERROR + f"Got {factor}")
312
+ self._check_factor_range(factor[0])
313
+ self._check_factor_range(factor[1])
314
+ self._factor = sorted(factor)
315
+ elif isinstance(factor, (int, float)):
316
+ self._check_factor_range(factor)
317
+ factor = abs(factor)
318
+ self._factor = [-factor, factor]
319
+ else:
320
+ raise ValueError(self._FACTOR_VALIDATION_ERROR + f"Got {factor}")
321
+
322
+ def _check_factor_range(self, input_number):
323
+ if input_number > 1.0 or input_number < -1.0:
324
+ raise ValueError(self._FACTOR_VALIDATION_ERROR + f"Got {input_number}")
325
+
326
+ def _brightness_adjust(self, image, rgb_delta):
327
+ image = utils.ensure_tensor(image, self.compute_dtype)
328
+ rank = image.shape.rank
329
+ if rank != 3:
330
+ raise ValueError(
331
+ "Expected the input image to be rank 3. Got "
332
+ f"inputs.shape = {image.shape}"
333
+ )
334
+ rgb_delta = tf.cast(rgb_delta, image.dtype)
335
+ image += rgb_delta
336
+ return tf.clip_by_value(image, self._value_range[0], self._value_range[1])
337
+
338
+ def get_config(self):
339
+ config = {
340
+ "factor": self._factor,
341
+ "value_range": self._value_range,
342
+ "seed": self._seed,
343
+ }
344
+ base_config = super().get_config()
345
+ return dict(list(base_config.items()) + list(config.items()))
requirements.txt ADDED
@@ -0,0 +1,1074 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==1.3.0; python_version >= "3.7" \
2
+ --hash=sha256:463c38a08d2e4cef6c498b76ba5bd4858e4c6ef51da1a5a1f27139a022e20248 \
3
+ --hash=sha256:34995df9bd7a09b3b8749e230408f5a2a2dd7a68a0d33c12a3d0cb15a041a507
4
+ altair==4.2.0; python_version >= "3.7"
5
+ appnope==0.1.3; platform_system == "Darwin" and python_version >= "3.8" and sys_platform == "darwin" \
6
+ --hash=sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e \
7
+ --hash=sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24
8
+ asttokens==2.1.0; python_version >= "3.8" \
9
+ --hash=sha256:1b28ed85e254b724439afc783d4bee767f780b936c3fe8b3275332f42cf5f561 \
10
+ --hash=sha256:4aa76401a151c8cc572d906aad7aea2a841780834a19d780f4321c0fe1b54635
11
+ astunparse==1.6.3; python_version >= "3.7" \
12
+ --hash=sha256:c2652417f2c8b5bb325c885ae329bdf3f86424075c4fd1a128674bc6fba4b8e8 \
13
+ --hash=sha256:5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872
14
+ attrs==22.1.0; python_version >= "3.7"
15
+ backcall==0.2.0; python_version >= "3.8" \
16
+ --hash=sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255 \
17
+ --hash=sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e
18
+ blinker==1.5; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.7"
19
+ cachetools==5.2.0; python_version >= "3.7" and python_version < "4.0" and (python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.7")
20
+ cellpose==2.1.0
21
+ certifi==2022.9.24; python_version >= "3.7" and python_version < "4" \
22
+ --hash=sha256:90c1a32f1d68f940488354e36370f6cca89f0f106db09518524c88d6ed83f382 \
23
+ --hash=sha256:0d9c601124e5a6ba9712dbc60d9c53c21e34f5f641fe83002317394311bdce14
24
+ cffi==1.15.1; implementation_name == "pypy" and python_version >= "3.7"
25
+ charset-normalizer==2.1.1; python_version >= "3.7" and python_version < "4" and python_full_version >= "3.6.0"
26
+ click==8.1.3; python_version >= "3.7" \
27
+ --hash=sha256:bb4d8133cb15a609f44e8213d9b391b0809795062913b383c62be0ee95b1db48 \
28
+ --hash=sha256:7682dc8afb30297001674575ea00d1814d808d6a36af415a82bd481d37ba7b8e
29
+ colorama==0.4.6; python_version >= "3.8" and python_full_version < "3.0.0" and platform_system == "Windows" and sys_platform == "win32" or python_full_version >= "3.7.0" and platform_system == "Windows" and python_version >= "3.8" and sys_platform == "win32" \
30
+ --hash=sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6 \
31
+ --hash=sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44
32
+ commonmark==0.9.1; python_full_version >= "3.6.3" and python_full_version < "4.0.0" and python_version >= "3.7"
33
+ contourpy==1.0.5; python_version >= "3.8" \
34
+ --hash=sha256:87121b9428ac568fb84fae4af5e7852fc34f02eadc4e3e91f6c8989327692186 \
35
+ --hash=sha256:1fb782982c42cee667b892a0b0c52a9f6c7ecf1da5c5f4345845f04eaa862f93 \
36
+ --hash=sha256:689d7d2a840619915d0abd1ecc6e399fee202f8ad315acda2807f4ca420d0802 \
37
+ --hash=sha256:d88814befbd1433152c5f6dd536905149ba028d795a22555b149ae0a36024d9e \
38
+ --hash=sha256:df65f4b2b4e74977f0336bef12a88051ab24e6a16873cd9249f34d67cb3e345d \
39
+ --hash=sha256:bf6b4c0c723664f65c2a47c8cb6ebbf660b0b2e2d936adf2e8503d4e93359465 \
40
+ --hash=sha256:bcc98d397c3dea45d5b262029564b29cb8e945f2607a38bee6163694c0a8b4ef \
41
+ --hash=sha256:2bf5c846c257578b03d498b20f54f53551616a507d8e5463511c58bb58e9a9cf \
42
+ --hash=sha256:cdacddb18d55ffec42d1907079cdc04ec4fa8a990cdf5b9d9fe67d281fc0d12e \
43
+ --hash=sha256:434942fa2f9019b9ae525fb752dc523800c49a1a28fbd6d9240b0fa959573dcc \
44
+ --hash=sha256:3b3082ade8849130203d461b98c2a061b382c46074b43b4edd5cefd81af92b8a \
45
+ --hash=sha256:057114f698ffb9e54657e8fda6802e2f5c8fad609845cf6afaf31590ef6a33c0 \
46
+ --hash=sha256:218722a29c5c26677d37c44f5f8a372daf6f07870aad793a97d47eb6ad6b3290 \
47
+ --hash=sha256:6c02e22cf09996194bcb3a4784099975cf527d5c29caf759abadf29ebdb2fe27 \
48
+ --hash=sha256:c0d5ee865b5fd16bf62d72122aadcc90aab296c30c1adb0a32b4b66bd843163e \
49
+ --hash=sha256:d45822b0a2a452327ab4f95efe368d234d5294bbf89a99968be27c7938a21108 \
50
+ --hash=sha256:dca5be83a6dfaf933a46e3bc2b9f2685e5ec61b22f6a38ad740aac9c16e9a0ff \
51
+ --hash=sha256:3c3f2f6b898a40207843ae01970e57e33d22a26b22f23c6a5e07b4716751085f \
52
+ --hash=sha256:c2b4eab7c12f9cb460509bc34a3b086f9802f0dba27c89a63df4123819ad64af \
53
+ --hash=sha256:09ed9b63f4df8a7591b7a4a26c1ad066dcaafda1f846250fdcb534074a411692 \
54
+ --hash=sha256:f670686d99c867d0f24b28ce8c6f02429c6eef5e2674aab287850d0ee2d20437 \
55
+ --hash=sha256:c51568e94f7f232296de30002f2a50f77a7bd346673da3e4f2aaf9d2b833f2e5 \
56
+ --hash=sha256:7c9e99aac7b430f6a9f15eebf058c742097cea3369f23a2bfc5e64d374b67e3a \
57
+ --hash=sha256:3210d93ad2af742b6a96cf39792f7181822edbb8fe11c3ef29d1583fe637a8d8 \
58
+ --hash=sha256:128bd7acf569f8443ad5b2227f30ac909e4f5399ed221727eeacf0c6476187e6 \
59
+ --hash=sha256:813c2944e940ef8dccea71305bacc942d4b193a021140874b3e58933ec44f5b6 \
60
+ --hash=sha256:a74afd8d560eaafe0d9e3e1db8c06081282a05ca4de00ee416195085a79d7d3d \
61
+ --hash=sha256:2d0ad9a85f208473b1f3613c45756c7aa6fcc288266a8c7b873f896aaf741b6b \
62
+ --hash=sha256:60f37acd4e4227c5a29f737d9a85ca3145c529a8dd4bf70af7f0637c61b49222 \
63
+ --hash=sha256:b50e481a4317a8efcfffcfddcd4c9b36eacba440440e70cbe0256aeb6fd6abae \
64
+ --hash=sha256:0395ae71164bfeb2dedd136e03c71a2718a5aa9873a46f518f4133be0d63e1d2 \
65
+ --hash=sha256:3ca40d7844b391d90b864c6a6d1bb6b88b09035fb4d866d64d43c4d26fb0ab64 \
66
+ --hash=sha256:3109fa601d2a448cec4643abd3a31f972bf05b7c2f2e83df9d3429878f8c10ae \
67
+ --hash=sha256:06c4d1dde5ee4f909a8a95ba1eb04040c6c26946b4f3b5beaf10d45f14e940ee \
68
+ --hash=sha256:2f54dcc9bb9390fd0636301ead134d46d5229fe86da0db4d974c0fda349f560e \
69
+ --hash=sha256:46b8e24813e2fb5a3e598c1f8b9ae403e1438cb846a80cc2b33cddf19dddd7f2 \
70
+ --hash=sha256:061e1f066c419ffe25b615a1df031b4832ea1d7f2676937e69e8e00e24512005 \
71
+ --hash=sha256:19ea64fa0cf389d2ebc10974616acfa1fdecbd73d1fd9c72215b782f3c40f561 \
72
+ --hash=sha256:dfe924e5a63861c82332a12adeeab955dc8c8009ddbbd80cc2fcca049ff89a49 \
73
+ --hash=sha256:bed3a2a823a041e8d249b1a7ec132933e1505299329b5cfe1b2b5ec689ec7675 \
74
+ --hash=sha256:0389349875424aa8c5e61f757e894687916bc4e9616cc6afcbd8051aa2428952 \
75
+ --hash=sha256:2b5e334330d82866923015b455260173cb3b9e3b4e297052d758abd262031289 \
76
+ --hash=sha256:def9a01b73c9e27d70ea03b381fb3e7aadfac1f398dbd63751313c3a46747ef5 \
77
+ --hash=sha256:59c827e536bb5e3ef58e06da0faba61fd89a14f30b68bcfeca41f43ca83a1942 \
78
+ --hash=sha256:f05d311c937da03b0cd26ac3e14cb991f6ff8fc94f98b3df9713537817539795 \
79
+ --hash=sha256:970a4be7ec84ccda7c27cb4ae74930bbbd477bc8d849ed55ea798084dd5fca8c \
80
+ --hash=sha256:0f7672148f8fca48e4efc16aba24a7455b40c22d4f8abe42475dec6a12b0bb9a \
81
+ --hash=sha256:eba62b7c21a33e72dd8adab2b92dd5610d8527f0b2ac28a8e0770e71b21a13f9 \
82
+ --hash=sha256:dd084459ecdb224e617e4ab3f1d5ebe4d1c48facb41f24952b76aa6ba9712bb0 \
83
+ --hash=sha256:c5158616ab39d34b76c50f40c81552ee180598f7825dc7a66fd187d29958820f \
84
+ --hash=sha256:f856652f9b533c6cd2b9ad6836a7fc0e43917d7ff15be46c5baf1350f8cdc5d9 \
85
+ --hash=sha256:f1cc623fd6855b25da52b3275e0c9e51711b86a9dccc75f8c9ab4432fd8e42c7 \
86
+ --hash=sha256:e67dcaa34dcd908fcccbf49194211d847c731b6ebaac661c1c889f1bf6af1e44 \
87
+ --hash=sha256:bfd634cb9685161b2a51f73a7fc4736fd0d67a56632d52319317afaa27f08243 \
88
+ --hash=sha256:79908b9d02b1d6c1c71ff3b7ad127f3f82e14a8e091ab44b3c7e34b649fea733 \
89
+ --hash=sha256:b4963cf08f4320d98ae72ec7694291b8ab85cb7da3b0cd824bc32701bc992edf \
90
+ --hash=sha256:3cfc067ddde78b76dcbc9684d82688b7d3c5158fa2254a085f9bcb9586c1e2d8 \
91
+ --hash=sha256:9939796abcadb2810a63dfb26ff8ca4595fe7dd70a3ceae7f607a2639b714307 \
92
+ --hash=sha256:d8150579bf30cdf896906baf256aa200cd50dbe6e565c17d6fd3d678e21ff5de \
93
+ --hash=sha256:ed9c91bf4ce614efed5388c3f989a7cfe08728ab871d995a486ea74ff88993db \
94
+ --hash=sha256:b46a04588ceb7cf132568e0e564a854627ef87a1ed3bf536234540a79ced44b0 \
95
+ --hash=sha256:b85553699862c09937a7a5ea14ee6229087971a7d51ae97d5f4b407f571a2c17 \
96
+ --hash=sha256:99a8071e351b50827ad976b92ed91845fb614ac67a3c41109b24f3d8bd3afada \
97
+ --hash=sha256:fb0458d74726937ead9e2effc91144aea5a58ecee9754242f8539a782bed685a \
98
+ --hash=sha256:0f89f0608a5aa8142ed0e53957916623791a88c7f5e5f07ae530c328beeb888f \
99
+ --hash=sha256:ce763369e646e59e4ca2c09735cd1bdd3048d909ad5f2bc116e83166a9352f3c \
100
+ --hash=sha256:9c16fa267740d67883899e054cccb4279e002f3f4872873b752c1ba15045ff49 \
101
+ --hash=sha256:a30e95274f5c0e007ccc759ec258aa5708c534ec058f153ee25ac700a2f1438b \
102
+ --hash=sha256:896631cd40222aef3697e4e51177d14c3709fda49d30983269d584f034acc8a4
103
+ csbdeep==0.7.2; python_version >= "3.6"
104
+ cycler==0.11.0; python_version >= "3.8" \
105
+ --hash=sha256:3a27e95f763a428a739d2add979fa7494c912a32c17c4c38c4d5f082cad165a3 \
106
+ --hash=sha256:9c87405839a19696e837b3b818fed3f5f69f16f1eec1a1ad77e043dcea9c772f
107
+ debugpy==1.6.3; python_version >= "3.7"
108
+ decorator==5.1.1; python_version >= "3.8" \
109
+ --hash=sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186 \
110
+ --hash=sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330
111
+ entrypoints==0.4; python_version >= "3.7" \
112
+ --hash=sha256:f174b5ff827504fd3cd97cc3f8649f3693f51538c7e4bdf3ef002c8429d42f9f \
113
+ --hash=sha256:b706eddaa9218a19ebcd67b56818f05bb27589b1ca9e8d797b74affad4ccacd4
114
+ executing==1.2.0; python_version >= "3.8" \
115
+ --hash=sha256:0314a69e37426e3608aada02473b4161d4caf5a4b244d1d0c48072b8fee7bacc \
116
+ --hash=sha256:19da64c18d2d851112f09c287f8d3dbbdf725ab0e569077efb6cdcbd3497c107
117
+ fastremap==1.13.3; python_version >= "3.6" and python_version < "4.0"
118
+ flatbuffers==22.10.26; python_version >= "3.7" \
119
+ --hash=sha256:e36d5ba7a5e9483ff0ec1d238fdc3011c866aab7f8ce77d5e9d445ac12071d84 \
120
+ --hash=sha256:8698aaa635ca8cf805c7d8414d4a4a8ecbffadca0325fa60551cb3ca78612356
121
+ fonttools==4.38.0; python_version >= "3.8" \
122
+ --hash=sha256:820466f43c8be8c3009aef8b87e785014133508f0de64ec469e4efb643ae54fb \
123
+ --hash=sha256:2bb244009f9bf3fa100fc3ead6aeb99febe5985fa20afbfbaa2f8946c2fbdaf1
124
+ gast==0.4.0; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.7" \
125
+ --hash=sha256:b7adcdd5adbebf1adf17378da5ba3f543684dbec47b1cda1f3997e573cd542c4 \
126
+ --hash=sha256:40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1
127
+ gitdb==4.0.9; python_version >= "3.7"
128
+ gitpython==3.1.29; python_version >= "3.7" \
129
+ --hash=sha256:41eea0deec2deea139b459ac03656f0dd28fc4a3387240ec1d3c259a2c47850f \
130
+ --hash=sha256:cc36bfc4a3f913e66805a28e84703e419d9c264c1077e537b54f0e1af85dbefd
131
+ google-auth-oauthlib==0.4.6; python_version >= "3.7" \
132
+ --hash=sha256:a90a072f6993f2c327067bf65270046384cda5a8ecb20b94ea9a687f1f233a7a \
133
+ --hash=sha256:3f2a6e802eebbb6fb736a370fbf3b055edcb6b52878bf2f26330b5e041316c73
134
+ google-auth==2.13.0; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.7" \
135
+ --hash=sha256:9352dd6394093169157e6971526bab9a2799244d68a94a4a609f0dd751ef6f5e \
136
+ --hash=sha256:99510e664155f1a3c0396a076b5deb6367c52ea04d280152c85ac7f51f50eb42
137
+ google-pasta==0.2.0; python_version >= "3.7" \
138
+ --hash=sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e \
139
+ --hash=sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954 \
140
+ --hash=sha256:b32482794a366b5366a32c92a9a9201b107821889935a02b3e51f6b432ea84ed
141
+ grpcio==1.50.0; python_version >= "3.7" \
142
+ --hash=sha256:906f4d1beb83b3496be91684c47a5d870ee628715227d5d7c54b04a8de802974 \
143
+ --hash=sha256:2d9fd6e38b16c4d286a01e1776fdf6c7a4123d99ae8d6b3f0b4a03a34bf6ce45 \
144
+ --hash=sha256:4b123fbb7a777a2fedec684ca0b723d85e1d2379b6032a9a9b7851829ed3ca9a \
145
+ --hash=sha256:b2f77a90ba7b85bfb31329f8eab9d9540da2cf8a302128fb1241d7ea239a5469 \
146
+ --hash=sha256:9eea18a878cffc804506d39c6682d71f6b42ec1c151d21865a95fae743fda500 \
147
+ --hash=sha256:2b71916fa8f9eb2abd93151fafe12e18cebb302686b924bd4ec39266211da525 \
148
+ --hash=sha256:95ce51f7a09491fb3da8cf3935005bff19983b77c4e9437ef77235d787b06842 \
149
+ --hash=sha256:f7025930039a011ed7d7e7ef95a1cb5f516e23c5a6ecc7947259b67bea8e06ca \
150
+ --hash=sha256:05f7c248e440f538aaad13eee78ef35f0541e73498dd6f832fe284542ac4b298 \
151
+ --hash=sha256:ca8a2254ab88482936ce941485c1c20cdeaef0efa71a61dbad171ab6758ec998 \
152
+ --hash=sha256:3b611b3de3dfd2c47549ca01abfa9bbb95937eb0ea546ea1d762a335739887be \
153
+ --hash=sha256:1a4cd8cb09d1bc70b3ea37802be484c5ae5a576108bad14728f2516279165dd7 \
154
+ --hash=sha256:156f8009e36780fab48c979c5605eda646065d4695deea4cfcbcfdd06627ddb6 \
155
+ --hash=sha256:de411d2b030134b642c092e986d21aefb9d26a28bf5a18c47dd08ded411a3bc5 \
156
+ --hash=sha256:d144ad10eeca4c1d1ce930faa105899f86f5d99cecfe0d7224f3c4c76265c15e \
157
+ --hash=sha256:92d7635d1059d40d2ec29c8bf5ec58900120b3ce5150ef7414119430a4b2dd5c \
158
+ --hash=sha256:ce8513aee0af9c159319692bfbf488b718d1793d764798c3d5cff827a09e25ef \
159
+ --hash=sha256:8e8999a097ad89b30d584c034929f7c0be280cd7851ac23e9067111167dcbf55 \
160
+ --hash=sha256:a50a1be449b9e238b9bd43d3857d40edf65df9416dea988929891d92a9f8a778 \
161
+ --hash=sha256:cf151f97f5f381163912e8952eb5b3afe89dec9ed723d1561d59cabf1e219a35 \
162
+ --hash=sha256:a23d47f2fc7111869f0ff547f771733661ff2818562b04b9ed674fa208e261f4 \
163
+ --hash=sha256:d84d04dec64cc4ed726d07c5d17b73c343c8ddcd6b59c7199c801d6bbb9d9ed1 \
164
+ --hash=sha256:67dd41a31f6fc5c7db097a5c14a3fa588af54736ffc174af4411d34c4f306f68 \
165
+ --hash=sha256:8d4c8e73bf20fb53fe5a7318e768b9734cf122fe671fcce75654b98ba12dfb75 \
166
+ --hash=sha256:7489dbb901f4fdf7aec8d3753eadd40839c9085967737606d2c35b43074eea24 \
167
+ --hash=sha256:531f8b46f3d3db91d9ef285191825d108090856b3bc86a75b7c3930f16ce432f \
168
+ --hash=sha256:d534d169673dd5e6e12fb57cc67664c2641361e1a0885545495e65a7b761b0f4 \
169
+ --hash=sha256:1d8d02dbb616c0a9260ce587eb751c9c7dc689bc39efa6a88cc4fa3e9c138a7b \
170
+ --hash=sha256:baab51dcc4f2aecabf4ed1e2f57bceab240987c8b03533f1cef90890e6502067 \
171
+ --hash=sha256:40838061e24f960b853d7bce85086c8e1b81c6342b1f4c47ff0edd44bbae2722 \
172
+ --hash=sha256:931e746d0f75b2a5cff0a1197d21827a3a2f400c06bace036762110f19d3d507 \
173
+ --hash=sha256:15f9e6d7f564e8f0776770e6ef32dac172c6f9960c478616c366862933fa08b4 \
174
+ --hash=sha256:a4c23e54f58e016761b576976da6a34d876420b993f45f66a2bfb00363ecc1f9 \
175
+ --hash=sha256:3e4244c09cc1b65c286d709658c061f12c61c814be0b7030a2d9966ff02611e0 \
176
+ --hash=sha256:8e69aa4e9b7f065f01d3fdcecbe0397895a772d99954bb82eefbb1682d274518 \
177
+ --hash=sha256:af98d49e56605a2912cf330b4627e5286243242706c3a9fa0bcec6e6f68646fc \
178
+ --hash=sha256:080b66253f29e1646ac53ef288c12944b131a2829488ac3bac8f52abb4413c0d \
179
+ --hash=sha256:ab5d0e3590f0a16cb88de4a3fa78d10eb66a84ca80901eb2c17c1d2c308c230f \
180
+ --hash=sha256:cb11464f480e6103c59d558a3875bd84eed6723f0921290325ebe97262ae1347 \
181
+ --hash=sha256:e07fe0d7ae395897981d16be61f0db9791f482f03fee7d1851fe20ddb4f69c03 \
182
+ --hash=sha256:d75061367a69808ab2e84c960e9dce54749bcc1e44ad3f85deee3a6c75b4ede9 \
183
+ --hash=sha256:ae23daa7eda93c1c49a9ecc316e027ceb99adbad750fbd3a56fa9e4a2ffd5ae0 \
184
+ --hash=sha256:177afaa7dba3ab5bfc211a71b90da1b887d441df33732e94e26860b3321434d9 \
185
+ --hash=sha256:ea8ccf95e4c7e20419b7827aa5b6da6f02720270686ac63bd3493a651830235c \
186
+ --hash=sha256:12b479839a5e753580b5e6053571de14006157f2ef9b71f38c56dc9b23b95ad6
187
+ h5py==3.7.0; python_version >= "3.9"
188
+ idna==3.4; python_version >= "3.7" and python_version < "4" \
189
+ --hash=sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2 \
190
+ --hash=sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4
191
+ imagecodecs==2022.9.26; python_version >= "3.8" \
192
+ --hash=sha256:c8dd5ffb3b37486fd621ebd1c27ce2f0f5936711d736e8b00cb3d8b3a6f484ae \
193
+ --hash=sha256:1d0f397e86fe731f845a7845769d91e49062562b88f09c9cf982e4534c4237c3 \
194
+ --hash=sha256:b3222cb01e9764fcccf90e21920ee76ccf36a4dd1e69d7a7824f9956d2173324 \
195
+ --hash=sha256:f9f02ae0addba6c5305c928d8ef91462cb682c038e6b93021144f53825fb9031 \
196
+ --hash=sha256:7069e0a79dcfab894ebb36dca894bf31db9125d2ded311db76aff69d1bb0440c \
197
+ --hash=sha256:871ac92eae3387e3dbfefeaff54c4e70b8110c928423673127d0ee268eb061e2 \
198
+ --hash=sha256:dac006c5bf94a50623061110c1c43fbc2dda8fa631cae41601ebaf354e066440 \
199
+ --hash=sha256:dcc0b47f1e9664fbbf7eca7e83f3472540bb28a89cfa43178712d2c581d2dd48 \
200
+ --hash=sha256:376461b2255511a3cb5cb68160fda0e44aa77802cb4f44ef980e849121fcd34c \
201
+ --hash=sha256:49860ac98e6721eb43e799da9682fb5835d183f62d9fc22aff52731f1a3031c4 \
202
+ --hash=sha256:d0b2944ccea7d552b7158bc160fd7a48756e4e72d00a8ee9229a6b993f822fa3 \
203
+ --hash=sha256:858f78f707f36f34118b3a6a2fba27b718c9c52ea6bda2c68da3a8239a3ed7dc \
204
+ --hash=sha256:ea3c19a75d1d7d129bbe6590eacbd04a1a97888d5064fe96befd04e42368b748 \
205
+ --hash=sha256:80c1e36aad2b105b69e63cd93bf25dbd391e939fe9e4a1f5701aa4bdc0f45330 \
206
+ --hash=sha256:f9ee64055fc5a0ce2cff11aeb0a4f229dca5cd03197a872d8fae1c443f0ff9ae \
207
+ --hash=sha256:9c521bbd689c3cf4da43e0ea4559e38d58d8a7bcdf8c10b2f0bb7950128abf44 \
208
+ --hash=sha256:8b5329ab1618403ba745c8f697dad9ab96459f91f322e855b71103e7d136d765 \
209
+ --hash=sha256:9c75c38203a0fbf19fb43d619e423f7200cac819066fe6579f7fc57f8c878805 \
210
+ --hash=sha256:04d5757d8fd7819844b0f8d9eed05025dca4962f280d0010b42c7c9c993fe371
211
+ imageio==2.22.2; python_version >= "3.7" \
212
+ --hash=sha256:9bdafe9c5a3d336a187f3f554f3e30bcdbf8a1d7d46f0e4d94e4a535adfb64c7 \
213
+ --hash=sha256:db7010cd10712518819a4187baf61b05988361ea20c23e829918727b27acb977
214
+ importlib-metadata==5.0.0; python_version < "3.10" and python_version >= "3.7" \
215
+ --hash=sha256:ddb0e35065e8938f867ed4928d0ae5bf2a53b7773871bfe6bcc7e4fcdc7dea43 \
216
+ --hash=sha256:da31db32b304314d044d3c12c79bd59e307889b287ad12ff387b3500835fc2ab
217
+ ipykernel==6.16.2; python_version >= "3.7" \
218
+ --hash=sha256:67daf93e5b52456cd8eea87a8b59405d2bb80ae411864a1ea206c3631d8179af \
219
+ --hash=sha256:463f3d87a92e99969b1605cb7a5b4d7b36b7145a0e72d06e65918a6ddefbe630
220
+ ipython==8.5.0; python_version >= "3.8" \
221
+ --hash=sha256:6f090e29ab8ef8643e521763a4f1f39dc3914db643122b1e9d3328ff2e43ada2 \
222
+ --hash=sha256:097bdf5cd87576fd066179c9f7f208004f7a6864ee1b20f37d346c0bcb099f84
223
+ jedi==0.18.1; python_version >= "3.8" \
224
+ --hash=sha256:637c9635fcf47945ceb91cd7f320234a7be540ded6f3e99a50cb6febdfd1ba8d \
225
+ --hash=sha256:74137626a64a99c8eb6ae5832d99b3bdd7d29a3850fe2aa80a4126b2a7d949ab
226
+ jinja2==3.1.2; python_version >= "3.7" \
227
+ --hash=sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61 \
228
+ --hash=sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852
229
+ jsonschema==4.16.0; python_version >= "3.7" \
230
+ --hash=sha256:9e74b8f9738d6a946d70705dc692b74b5429cd0960d58e79ffecfc43b2221eb9 \
231
+ --hash=sha256:165059f076eff6971bae5b742fc029a7b4ef3f9bcf04c14e4776a7605de14b23
232
+ jupyter-client==7.4.4; python_version >= "3.7" \
233
+ --hash=sha256:1c1d418ef32a45a1fae0b243e6f01cc9bf65fa8ddbd491a034b9ba6ac6502951 \
234
+ --hash=sha256:5616db609ac720422e6a4b893d6572b8d655ff41e058367f4459a0d2c0726832
235
+ jupyter-core==4.11.2; python_version >= "3.7" \
236
+ --hash=sha256:3815e80ec5272c0c19aad087a0d2775df2852cfca8f5a17069e99c9350cecff8 \
237
+ --hash=sha256:c2909b9bc7dca75560a6c5ae78c34fd305ede31cd864da3c0d0bb2ed89aa9337
238
+ keras-preprocessing==1.1.2; python_version >= "3.7" \
239
+ --hash=sha256:7b82029b130ff61cc99b55f3bd27427df4838576838c5b2f65940e4fcec99a7b \
240
+ --hash=sha256:add82567c50c8bc648c14195bf544a5ce7c1f76761536956c3d2978970179ef3
241
+ keras==2.10.0; python_version >= "3.7" \
242
+ --hash=sha256:26a6e2c2522e7468ddea22710a99b3290493768fc08a39e75d1173a0e3452fdf
243
+ kiwisolver==1.4.4; python_version >= "3.8"
244
+ libclang==14.0.6; python_version >= "3.7"
245
+ llvmlite==0.39.1; python_version >= "3.7" \
246
+ --hash=sha256:6717c7a6e93c9d2c3d07c07113ec80ae24af45cde536b34363d4bcd9188091d9 \
247
+ --hash=sha256:ddab526c5a2c4ccb8c9ec4821fcea7606933dc53f510e2a6eebb45a418d3488a \
248
+ --hash=sha256:a3f331a323d0f0ada6b10d60182ef06c20a2f01be21699999d204c5750ffd0b4 \
249
+ --hash=sha256:e2c00ff204afa721b0bb9835b5bf1ba7fba210eefcec5552a9e05a63219ba0dc \
250
+ --hash=sha256:16f56eb1eec3cda3a5c526bc3f63594fc24e0c8d219375afeb336f289764c6c7 \
251
+ --hash=sha256:d0bfd18c324549c0fec2c5dc610fd024689de6f27c6cc67e4e24a07541d6e49b \
252
+ --hash=sha256:7ebf1eb9badc2a397d4f6a6c8717447c81ac011db00064a00408bc83c923c0e4 \
253
+ --hash=sha256:6546bed4e02a1c3d53a22a0bced254b3b6894693318b16c16c8e43e29d6befb6 \
254
+ --hash=sha256:1578f5000fdce513712e99543c50e93758a954297575610f48cb1fd71b27c08a \
255
+ --hash=sha256:3803f11ad5f6f6c3d2b545a303d68d9fabb1d50e06a8d6418e6fcd2d0df00959 \
256
+ --hash=sha256:50aea09a2b933dab7c9df92361b1844ad3145bfb8dd2deb9cd8b8917d59306fb \
257
+ --hash=sha256:b1a0bbdb274fb683f993198775b957d29a6f07b45d184c571ef2a721ce4388cf \
258
+ --hash=sha256:e172c73fccf7d6db4bd6f7de963dedded900d1a5c6778733241d878ba613980e \
259
+ --hash=sha256:e31f4b799d530255aaf0566e3da2df5bfc35d3cd9d6d5a3dcc251663656c27b1 \
260
+ --hash=sha256:62c0ea22e0b9dffb020601bb65cb11dd967a095a488be73f07d8867f4e327ca5 \
261
+ --hash=sha256:9ffc84ade195abd4abcf0bd3b827b9140ae9ef90999429b9ea84d5df69c9058c \
262
+ --hash=sha256:c0f158e4708dda6367d21cf15afc58de4ebce979c7a1aa2f6b977aae737e2a54 \
263
+ --hash=sha256:22d36591cd5d02038912321d9ab8e4668e53ae2211da5523f454e992b5e13c36 \
264
+ --hash=sha256:4c6ebace910410daf0bebda09c1859504fc2f33d122e9a971c4c349c89cca630 \
265
+ --hash=sha256:fb62fc7016b592435d3e3a8f680e3ea8897c3c9e62e6e6cc58011e7a4801439e \
266
+ --hash=sha256:fa9b26939ae553bf30a9f5c4c754db0fb2d2677327f2511e674aa2f5df941789 \
267
+ --hash=sha256:e4f212c018db951da3e1dc25c2651abc688221934739721f2dad5ff1dd5f90e7 \
268
+ --hash=sha256:39dc2160aed36e989610fc403487f11b8764b6650017ff367e45384dff88ffbf \
269
+ --hash=sha256:1ec3d70b3e507515936e475d9811305f52d049281eaa6c8273448a61c9b5b7e2 \
270
+ --hash=sha256:60f8dd1e76f47b3dbdee4b38d9189f3e020d22a173c00f930b52131001d801f9 \
271
+ --hash=sha256:03aee0ccd81735696474dc4f8b6be60774892a2929d6c05d093d17392c237f32 \
272
+ --hash=sha256:3fc14e757bc07a919221f0cbaacb512704ce5774d7fcada793f1996d6bc75f2a \
273
+ --hash=sha256:b43abd7c82e805261c425d50335be9a6c4f84264e34d6d6e475207300005d572
274
+ markdown==3.4.1; python_version >= "3.7"
275
+ markupsafe==2.1.1; python_version >= "3.7" \
276
+ --hash=sha256:86b1f75c4e7c2ac2ccdaec2b9022845dbb81880ca318bb7a0a01fbf7813e3812 \
277
+ --hash=sha256:f121a1420d4e173a5d96e47e9a0c0dcff965afdf1626d28de1460815f7c4ee7a \
278
+ --hash=sha256:a49907dd8420c5685cfa064a1335b6754b74541bbb3706c259c02ed65b644b3e \
279
+ --hash=sha256:10c1bfff05d95783da83491be968e8fe789263689c02724e0c691933c52994f5 \
280
+ --hash=sha256:b7bd98b796e2b6553da7225aeb61f447f80a1ca64f41d83612e6139ca5213aa4 \
281
+ --hash=sha256:b09bf97215625a311f669476f44b8b318b075847b49316d3e28c08e41a7a573f \
282
+ --hash=sha256:694deca8d702d5db21ec83983ce0bb4b26a578e71fbdbd4fdcd387daa90e4d5e \
283
+ --hash=sha256:efc1913fd2ca4f334418481c7e595c00aad186563bbc1ec76067848c7ca0a933 \
284
+ --hash=sha256:4a33dea2b688b3190ee12bd7cfa29d39c9ed176bda40bfa11099a3ce5d3a7ac6 \
285
+ --hash=sha256:dda30ba7e87fbbb7eab1ec9f58678558fd9a6b8b853530e176eabd064da81417 \
286
+ --hash=sha256:671cd1187ed5e62818414afe79ed29da836dde67166a9fac6d435873c44fdd02 \
287
+ --hash=sha256:3799351e2336dc91ea70b034983ee71cf2f9533cdff7c14c90ea126bfd95d65a \
288
+ --hash=sha256:e72591e9ecd94d7feb70c1cbd7be7b3ebea3f548870aa91e2732960fa4d57a37 \
289
+ --hash=sha256:6fbf47b5d3728c6aea2abb0589b5d30459e369baa772e0f37a0320185e87c980 \
290
+ --hash=sha256:d5ee4f386140395a2c818d149221149c54849dfcfcb9f1debfe07a8b8bd63f9a \
291
+ --hash=sha256:bcb3ed405ed3222f9904899563d6fc492ff75cce56cba05e32eff40e6acbeaa3 \
292
+ --hash=sha256:e1c0b87e09fa55a220f058d1d49d3fb8df88fbfab58558f1198e08c1e1de842a \
293
+ --hash=sha256:8dc1c72a69aa7e082593c4a203dcf94ddb74bb5c8a731e4e1eb68d031e8498ff \
294
+ --hash=sha256:97a68e6ada378df82bc9f16b800ab77cbf4b2fada0081794318520138c088e4a \
295
+ --hash=sha256:e8c843bbcda3a2f1e3c2ab25913c80a3c5376cd00c6e8c4a86a89a28c8dc5452 \
296
+ --hash=sha256:0212a68688482dc52b2d45013df70d169f542b7394fc744c02a57374a4207003 \
297
+ --hash=sha256:8e576a51ad59e4bfaac456023a78f6b5e6e7651dcd383bcc3e18d06f9b55d6d1 \
298
+ --hash=sha256:4b9fe39a2ccc108a4accc2676e77da025ce383c108593d65cc909add5c3bd601 \
299
+ --hash=sha256:96e37a3dc86e80bf81758c152fe66dbf60ed5eca3d26305edf01892257049925 \
300
+ --hash=sha256:6d0072fea50feec76a4c418096652f2c3238eaa014b2f94aeb1d56a66b41403f \
301
+ --hash=sha256:089cf3dbf0cd6c100f02945abeb18484bd1ee57a079aefd52cffd17fba910b88 \
302
+ --hash=sha256:6a074d34ee7a5ce3effbc526b7083ec9731bb3cbf921bbe1d3005d4d2bdb3a63 \
303
+ --hash=sha256:421be9fbf0ffe9ffd7a378aafebbf6f4602d564d34be190fc19a193232fd12b1 \
304
+ --hash=sha256:fc7b548b17d238737688817ab67deebb30e8073c95749d55538ed473130ec0c7 \
305
+ --hash=sha256:e04e26803c9c3851c931eac40c695602c6295b8d432cbe78609649ad9bd2da8a \
306
+ --hash=sha256:b87db4360013327109564f0e591bd2a3b318547bcef31b468a92ee504d07ae4f \
307
+ --hash=sha256:99a2a507ed3ac881b975a2976d59f38c19386d128e7a9a18b7df6fff1fd4c1d6 \
308
+ --hash=sha256:56442863ed2b06d19c37f94d999035e15ee982988920e12a5b4ba29b62ad1f77 \
309
+ --hash=sha256:3ce11ee3f23f79dbd06fb3d63e2f6af7b12db1d46932fe7bd8afa259a5996603 \
310
+ --hash=sha256:33b74d289bd2f5e527beadcaa3f401e0df0a89927c1559c8566c066fa4248ab7 \
311
+ --hash=sha256:43093fb83d8343aac0b1baa75516da6092f58f41200907ef92448ecab8825135 \
312
+ --hash=sha256:8e3dcf21f367459434c18e71b2a9532d96547aef8a871872a5bd69a715c15f96 \
313
+ --hash=sha256:d4306c36ca495956b6d568d276ac11fdd9c30a36f1b6eb928070dc5360b22e1c \
314
+ --hash=sha256:46d00d6cfecdde84d40e572d63735ef81423ad31184100411e6e3388d405e247 \
315
+ --hash=sha256:7f91197cc9e48f989d12e4e6fbc46495c446636dfc81b9ccf50bb0ec74b91d4b
316
+ matplotlib-inline==0.1.6; python_version >= "3.8"
317
+ matplotlib==3.6.1; python_version >= "3.8" \
318
+ --hash=sha256:7730e60e751cfcfe7fcb223cf03c0b979e9a064c239783ad37929d340a364cef \
319
+ --hash=sha256:9dd40505ccc526acaf9a5db1b3029e237c64b58f1249983b28a291c2d6a1d0fa \
320
+ --hash=sha256:85948b303534b69fd771126764cf883fde2af9b003eb5778cb60f3b46f93d3f6 \
321
+ --hash=sha256:71eced071825005011cdc64efbae2e2c76b8209c18aa487dedf69796fe4b1e40 \
322
+ --hash=sha256:220314c2d6b9ca11570d7cd4b841c9f3137546f188336003b9fb8def4dcb804d \
323
+ --hash=sha256:2cc5d726d4d42865f909c5208a7841109d76584950dd0587b01a77cc279d4ab7 \
324
+ --hash=sha256:183bf3ac6a6023ee590aa4b677f391ceed65ec0d6b930901a8483c267bd12995 \
325
+ --hash=sha256:a68b91ac7e6bb26100a540a033f54c95fe06d9c0aa51312c2a52d07d1bde78f4 \
326
+ --hash=sha256:4648f0d79a87bf50ee740058305c91091ee5e1fbb71a7d2f5fe6707bfe328d1c \
327
+ --hash=sha256:9403764017d20ff570f7ce973a8b9637f08a6109118f4e0ce6c7493d8849a0d3 \
328
+ --hash=sha256:e4c8b5a243dd29d50289d694e931bd6cb6ae0b5bd654d12c647543d63862540c \
329
+ --hash=sha256:c1effccef0cea2d4da9feeed22079adf6786f92c800a7d0d2ef2104318a1c66c \
330
+ --hash=sha256:8dc25473319afabe49150267e54648ac559c33b0fc2a80c8caecfbbc2948a820 \
331
+ --hash=sha256:47cb088bbce82ae9fc2edf3c25e56a5c6142ce2553fea2b781679f960a70c207 \
332
+ --hash=sha256:4d3b0e0a4611bd22065bbf47e9b2f689ac9e575bcb850a9f0ae2bbed75cab956 \
333
+ --hash=sha256:e3c116e779fbbf421a9e4d3060db259a9bb486d98f4e3c5a0877c599bd173582 \
334
+ --hash=sha256:565f514dec81a41cbed10eb6011501879695087fc2787fb89423a466508abbbd \
335
+ --hash=sha256:05e86446562063d6186ff6d700118c0dbd5dccc403a6187351ee526c48878f10 \
336
+ --hash=sha256:8245e85fd793f58edf29b8a9e3be47e8ecf76ea1a1e8240545f2746181ca5787 \
337
+ --hash=sha256:1e2c75d5d1ff6b7ef9870360bfa23bea076b8dc0945a60d19453d7619ed9ea8f \
338
+ --hash=sha256:c9756a8e69f6e1f76d47eb42132175b6814da1fbeae0545304c6d0fc2aae252a \
339
+ --hash=sha256:6f5788168da2661b42f7468063b725cc73fdbeeb80f2704cb2d8c415e9a57c50 \
340
+ --hash=sha256:0bab7564aafd5902128d54b68dca04f5755413fb6b502100bb0235a545882c48 \
341
+ --hash=sha256:3c53486278a0629fd892783271dc994b962fba8dfe207445d039e14f1928ea46 \
342
+ --hash=sha256:27337bcb38d5db7430c14f350924542d75416ec1546d5d9d9f39b362b71db3fb \
343
+ --hash=sha256:fad858519bd6d52dbfeebdbe04d00dd8e932ed436f1c535e61bcc970a96c11e4 \
344
+ --hash=sha256:4a3d903588b519b38ed085d0ae762a1dcd4b70164617292175cfd91b90d6c415 \
345
+ --hash=sha256:87bdbd37d0a41e025879863fe9b17bab15c0421313bc33e77e5e1aa54215c9c5 \
346
+ --hash=sha256:e632f66218811d4cf8b7a2a649e25ec15406c3c498f72d19e2bcf8377f38445d \
347
+ --hash=sha256:8ddd58324dc9a77e2e56d7b7aea7dbd0575b6f7cd1333c3ca9d388ac70978344 \
348
+ --hash=sha256:12ab21d0cad122f5b23688d453a0280676e7c42f634f0dbd093d15d42d142b1f \
349
+ --hash=sha256:563896ba269324872ace436a57775dcc8322678a9496b28a8c25cdafa5ec2b92 \
350
+ --hash=sha256:52935b7d4ccbf0dbc9cf454dbb10ca99c11cbe8da9467596b96e5e21fd4dfc5c \
351
+ --hash=sha256:87027ff7b2edeb14476900261ef04d4beae949e1dfa0a3eb3ad6a6efbf9d0e1d \
352
+ --hash=sha256:a4de03085afb3b80fab341afaf8e60dfe06ce439b6dfed55d657cf34a7bc3c40 \
353
+ --hash=sha256:b53387d4e59432ff221540a4ffb5ee9669c69417805e4faf0148a00d701c61f9 \
354
+ --hash=sha256:02561141c434154f7bae8e5449909d152367cb40aa57bfb2a27f2748b9c5f95f \
355
+ --hash=sha256:d0161ebf87518ecfe0980c942d5f0d5df0e080c1746ebaab2027a969967014b7 \
356
+ --hash=sha256:2469f57e4c5cc0e85eddc7b30995ea9c404a78c0b1856da75d1a5887156ca350 \
357
+ --hash=sha256:5f97141e05baf160c3ec125f06ceb2a44c9bb62f42fcb8ee1c05313c73e99432 \
358
+ --hash=sha256:e2d1b7225666f7e1bcc94c0bc9c587a82e3e8691da4757e357e5c2515222ee37
359
+ natsort==8.2.0; python_version >= "3.6" \
360
+ --hash=sha256:04fe18fdd2b9e5957f19f687eb117f102ef8dde6b574764e536e91194bed4f5f \
361
+ --hash=sha256:57f85b72c688b09e053cdac302dd5b5b53df5f73ae20b4874fcbffd8bf783d11
362
+ nest-asyncio==1.5.6; python_version >= "3.7" \
363
+ --hash=sha256:b9a953fb40dceaa587d109609098db21900182b16440652454a146cffb06e8b8 \
364
+ --hash=sha256:d267cc1ff794403f7df692964d1d2a3fa9418ffea2a3f6859a439ff482fef290
365
+ networkx==2.8.7; python_version >= "3.8" \
366
+ --hash=sha256:15cdf7f7c157637107ea690cabbc488018f8256fa28242aed0fb24c93c03a06d \
367
+ --hash=sha256:815383fd52ece0a7024b5fd8408cc13a389ea350cd912178b82eed8b96f82cd3
368
+ numba==0.56.3; python_version >= "3.7" \
369
+ --hash=sha256:8848697e1e952b56886e84eecd5ae83d890ec0481c48ac803e13e2ab75a7d294 \
370
+ --hash=sha256:2256fee4332ab1e51cd0ec57086989e4011616ddb438659d99bb35822f43939b \
371
+ --hash=sha256:73529b33c0195e9f9e77b60896a5c5dc7ae0190bd8a1e3db15916b03befd641e \
372
+ --hash=sha256:c6b0539a30ab68903730f86ff6a9140e705b33c572402a42962b24a4e1fe8eb2 \
373
+ --hash=sha256:a776b5b177605569fbc04e6e68ba62e461ec5bbb1ea007a0c8d2e5f2a872c1a8 \
374
+ --hash=sha256:70f834f17136f6b403304ea2ffdeda0893c976540c4e9cd8f32b99258f75ada3 \
375
+ --hash=sha256:35da8eb35659cc7d8a603ecc3e65359166f5496b1e7b9b77f712a97893e9d81a \
376
+ --hash=sha256:6f3a848e73e8353b2c5ac9e9b03e99a13d5fa693c6ee14684a36c045ab369770 \
377
+ --hash=sha256:f9ae7b37e5cb53b62eb958f159f8defabd666af4ff1a9eb1de48cf2faf1dc918 \
378
+ --hash=sha256:99463b892e2e71fe6a10ffd4bd7e8517fac66cd73909b738fee715a2111e423c \
379
+ --hash=sha256:18f8c98641bf746b06b3d37efc09fe5ebb84c951df5ad8bd573795756d07e7f8 \
380
+ --hash=sha256:63c9fb3fdda56fababaa128a51209c8fabef12dd21491b1af41e0a6888e4c63e \
381
+ --hash=sha256:5398e6c75017f4dc04875cbc1efe28556b0e1719cff6c41b6cd7509a896698f2 \
382
+ --hash=sha256:79c154566b1a8f0644eb9c8f1808f66007bc8278791a44623cc3b7f3ddc61edd \
383
+ --hash=sha256:22c493a20d816980712768cb302eea417609a200348b784523e106a45a6e2185 \
384
+ --hash=sha256:ea63562915c15dff559c1eb45dced16b61cfbc7233ffb9444063421ec6c5ffaf \
385
+ --hash=sha256:c230f875a157772f51d82ba3e510cd97bdfec8fed4603e49f97d221332adc714 \
386
+ --hash=sha256:32a16bd6257b5e09e3227b886dea40ca16cf62df45c1914c630f43c5bf4ebf7e \
387
+ --hash=sha256:49c6ac44877d11523040ec1b92323184b23afa5619931a4e0137ed8d2b958819 \
388
+ --hash=sha256:20e2a02937b27800c2126d1efcb6c8e0535292e82434ab0d98b1060ffeb1867a \
389
+ --hash=sha256:9439331818d38fa1ca87ccbc211fe6bec48aad51d028a93a5d7214aee4de94d9 \
390
+ --hash=sha256:e668e2be37c76c74d4011f590f611b4fd3dac79438a491365391f2739ff2f233 \
391
+ --hash=sha256:0a413c2ce289071c62905308fc2fa66bc5f21b6f55d7539625c1ff3a11a17edf \
392
+ --hash=sha256:b4e300e749430e77bcc8b4d990dcc8e217a6d9bcae8f9f402686933d3a6ee53d \
393
+ --hash=sha256:bf8fbaff80aa9969da316b54280dd2707bb9dcfafcaaa58cc681206ccc1f8c57 \
394
+ --hash=sha256:35aeaae51bbbc87035e8c07189eac0d1d4b2490e43c503a585fa4a220b9d0320 \
395
+ --hash=sha256:0744cf4214ed795eb2df3ed1635d77a6ffcbd990a66a06125548b5fb8ee46323 \
396
+ --hash=sha256:07a2d8a149ecc6eca4ef5c7216e58511d48184854e07b7f59d0c32fab0742e8f
397
+ numpy==1.23.4 \
398
+ --hash=sha256:95d79ada05005f6f4f337d3bb9de8a7774f259341c70bc88047a1f7b96a4bcb2 \
399
+ --hash=sha256:926db372bc4ac1edf81cfb6c59e2a881606b409ddc0d0920b988174b2e2a767f \
400
+ --hash=sha256:c237129f0e732885c9a6076a537e974160482eab8f10db6292e92154d4c67d71 \
401
+ --hash=sha256:a8365b942f9c1a7d0f0dc974747d99dd0a0cdfc5949a33119caf05cb314682d3 \
402
+ --hash=sha256:2341f4ab6dba0834b685cce16dad5f9b6606ea8a00e6da154f5dbded70fdc4dd \
403
+ --hash=sha256:d331afac87c92373826af83d2b2b435f57b17a5c74e6268b79355b970626e329 \
404
+ --hash=sha256:488a66cb667359534bc70028d653ba1cf307bae88eab5929cd707c761ff037db \
405
+ --hash=sha256:ce03305dd694c4873b9429274fd41fc7eb4e0e4dea07e0af97a933b079a5814f \
406
+ --hash=sha256:8981d9b5619569899666170c7c9748920f4a5005bf79c72c07d08c8a035757b0 \
407
+ --hash=sha256:7a70a7d3ce4c0e9284e92285cba91a4a3f5214d87ee0e95928f3614a256a1488 \
408
+ --hash=sha256:5e13030f8793e9ee42f9c7d5777465a560eb78fa7e11b1c053427f2ccab90c79 \
409
+ --hash=sha256:7607b598217745cc40f751da38ffd03512d33ec06f3523fb0b5f82e09f6f676d \
410
+ --hash=sha256:7ab46e4e7ec63c8a5e6dbf5c1b9e1c92ba23a7ebecc86c336cb7bf3bd2fb10e5 \
411
+ --hash=sha256:a8aae2fb3180940011b4862b2dd3756616841c53db9734b27bb93813cd79fce6 \
412
+ --hash=sha256:8c053d7557a8f022ec823196d242464b6955a7e7e5015b719e76003f63f82d0f \
413
+ --hash=sha256:a0882323e0ca4245eb0a3d0a74f88ce581cc33aedcfa396e415e5bba7bf05f68 \
414
+ --hash=sha256:dada341ebb79619fe00a291185bba370c9803b1e1d7051610e01ed809ef3a4ba \
415
+ --hash=sha256:0fe563fc8ed9dc4474cbf70742673fc4391d70f4363f917599a7fa99f042d5a8 \
416
+ --hash=sha256:c67b833dbccefe97cdd3f52798d430b9d3430396af7cdb2a0c32954c3ef73894 \
417
+ --hash=sha256:f76025acc8e2114bb664294a07ede0727aa75d63a06d2fae96bf29a81747e4a7 \
418
+ --hash=sha256:12ac457b63ec8ded85d85c1e17d85efd3c2b0967ca39560b307a35a6703a4735 \
419
+ --hash=sha256:95de7dc7dc47a312f6feddd3da2500826defdccbc41608d0031276a24181a2c0 \
420
+ --hash=sha256:f2f390aa4da44454db40a1f0201401f9036e8d578a25f01a6e237cea238337ef \
421
+ --hash=sha256:f260da502d7441a45695199b4e7fd8ca87db659ba1c78f2bbf31f934fe76ae0e \
422
+ --hash=sha256:61be02e3bf810b60ab74e81d6d0d36246dbfb644a462458bb53b595791251911 \
423
+ --hash=sha256:296d17aed51161dbad3c67ed6d164e51fcd18dbcd5dd4f9d0a9c6055dce30810 \
424
+ --hash=sha256:4d52914c88b4930dafb6c48ba5115a96cbab40f45740239d9f4159c4ba779962 \
425
+ --hash=sha256:ed2cc92af0efad20198638c69bb0fc2870a58dabfba6eb722c933b48556c686c
426
+ nvidia-cublas-cu11==11.10.3.66; python_version >= "3" and python_full_version >= "3.7.0" \
427
+ --hash=sha256:d32e4d75f94ddfb93ea0a5dda08389bcc65d8916a25cb9f37ac89edaeed3bded \
428
+ --hash=sha256:8ac17ba6ade3ed56ab898a036f9ae0756f1e81052a317bf98f8c6d18dc3ae49e
429
+ nvidia-cuda-nvrtc-cu11==11.7.99; python_version >= "3" and python_full_version >= "3.7.0" \
430
+ --hash=sha256:9f1562822ea264b7e34ed5930567e89242d266448e936b85bc97a3370feabb03 \
431
+ --hash=sha256:f7d9610d9b7c331fa0da2d1b2858a4a8315e6d49765091d28711c8946e7425e7 \
432
+ --hash=sha256:f2effeb1309bdd1b3854fc9b17eaf997808f8b25968ce0c7070945c4265d64a3
433
+ nvidia-cuda-runtime-cu11==11.7.99; python_version >= "3" and python_full_version >= "3.7.0" \
434
+ --hash=sha256:cc768314ae58d2641f07eac350f40f99dcb35719c4faff4bc458a7cd2b119e31 \
435
+ --hash=sha256:bc77fa59a7679310df9d5c70ab13c4e34c64ae2124dd1efd7e5474b71be125c7
436
+ nvidia-cudnn-cu11==8.5.0.96; python_version >= "3" and python_full_version >= "3.7.0" \
437
+ --hash=sha256:402f40adfc6f418f9dae9ab402e773cfed9beae52333f6d86ae3107a1b9527e7 \
438
+ --hash=sha256:71f8111eb830879ff2836db3cccf03bbd735df9b0d17cd93761732ac50a8a108
439
+ oauthlib==3.2.2; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.7" \
440
+ --hash=sha256:8139f29aac13e25d502680e9e19963e83f16838d48a0d71c287fe40e7067fbca \
441
+ --hash=sha256:9859c40929662bec5d64f34d01c99e093149682a3f38915dc0655d5a633dd918
442
+ opencv-python-headless==4.6.0.66; python_version >= "3.6"
443
+ opt-einsum==3.3.0; python_version >= "3.7" \
444
+ --hash=sha256:2455e59e3947d3c275477df7f5205b30635e266fe6dc300e3d9f9646bfcea147 \
445
+ --hash=sha256:59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549
446
+ packaging==21.3; python_version >= "3.8" \
447
+ --hash=sha256:ef103e05f519cdc783ae24ea4e2e0f508a9c99b2d4969652eed6a2e1ea5bd522 \
448
+ --hash=sha256:dd47c42927d89ab911e606518907cc2d3a1f38bbd026385970643f9c5b8ecfeb
449
+ pandas==1.5.1; python_version >= "3.8" \
450
+ --hash=sha256:0a78e05ec09731c5b3bd7a9805927ea631fe6f6cb06f0e7c63191a9a778d52b4 \
451
+ --hash=sha256:5b0c970e2215572197b42f1cff58a908d734503ea54b326412c70d4692256391 \
452
+ --hash=sha256:f340331a3f411910adfb4bbe46c2ed5872d9e473a783d7f14ecf49bc0869c594 \
453
+ --hash=sha256:d8c709f4700573deb2036d240d140934df7e852520f4a584b2a8d5443b71f54d \
454
+ --hash=sha256:32e3d9f65606b3f6e76555bfd1d0b68d94aff0929d82010b791b6254bf5a4b96 \
455
+ --hash=sha256:a52419d9ba5906db516109660b114faf791136c94c1a636ed6b29cbfff9187ee \
456
+ --hash=sha256:66a1ad667b56e679e06ba73bb88c7309b3f48a4c279bd3afea29f65a766e9036 \
457
+ --hash=sha256:36aa1f8f680d7584e9b572c3203b20d22d697c31b71189322f16811d4ecfecd3 \
458
+ --hash=sha256:bcf1a82b770b8f8c1e495b19a20d8296f875a796c4fe6e91da5ef107f18c5ecb \
459
+ --hash=sha256:2c25e5c16ee5c0feb6cf9d982b869eec94a22ddfda9aa2fbed00842cbb697624 \
460
+ --hash=sha256:932d2d7d3cab44cfa275601c982f30c2d874722ef6396bb539e41e4dc4618ed4 \
461
+ --hash=sha256:eb7e8cf2cf11a2580088009b43de84cabbf6f5dae94ceb489f28dba01a17cb77 \
462
+ --hash=sha256:cb2a9cf1150302d69bb99861c5cddc9c25aceacb0a4ef5299785d0f5389a3209 \
463
+ --hash=sha256:81f0674fa50b38b6793cd84fae5d67f58f74c2d974d2cb4e476d26eee33343d0 \
464
+ --hash=sha256:17da7035d9e6f9ea9cdc3a513161f8739b8f8489d31dc932bc5a29a27243f93d \
465
+ --hash=sha256:669c8605dba6c798c1863157aefde959c1796671ffb342b80fcb80a4c0bc4c26 \
466
+ --hash=sha256:683779e5728ac9138406c59a11e09cd98c7d2c12f0a5fc2b9c5eecdbb4a00075 \
467
+ --hash=sha256:ddf46b940ef815af4e542697eaf071f0531449407a7607dd731bf23d156e20a7 \
468
+ --hash=sha256:db45b94885000981522fb92349e6b76f5aee0924cc5315881239c7859883117d \
469
+ --hash=sha256:927e59c694e039c75d7023465d311277a1fc29ed7236b5746e9dddf180393113 \
470
+ --hash=sha256:e675f8fe9aa6c418dc8d3aac0087b5294c1a4527f1eacf9fe5ea671685285454 \
471
+ --hash=sha256:04e51b01d5192499390c0015630975f57836cc95c7411415b499b599b05c0c96 \
472
+ --hash=sha256:5cee0c74e93ed4f9d39007e439debcaadc519d7ea5c0afc3d590a3a7b2edf060 \
473
+ --hash=sha256:b156a971bc451c68c9e1f97567c94fd44155f073e3bceb1b0d195fd98ed12048 \
474
+ --hash=sha256:05c527c64ee02a47a24031c880ee0ded05af0623163494173204c5b72ddce658 \
475
+ --hash=sha256:6bb391659a747cf4f181a227c3e64b6d197100d53da98dcd766cc158bdd9ec68 \
476
+ --hash=sha256:249cec5f2a5b22096440bd85c33106b6102e0672204abd2d5c014106459804ee
477
+ parso==0.8.3; python_version >= "3.8" \
478
+ --hash=sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75 \
479
+ --hash=sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0
480
+ pexpect==4.8.0; sys_platform != "win32" and python_version >= "3.8" \
481
+ --hash=sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937 \
482
+ --hash=sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c
483
+ pickleshare==0.7.5; python_version >= "3.8" \
484
+ --hash=sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56 \
485
+ --hash=sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca
486
+ pillow==9.3.0; python_version >= "3.8" \
487
+ --hash=sha256:0b7257127d646ff8676ec8a15520013a698d1fdc48bc2a79ba4e53df792526f2 \
488
+ --hash=sha256:b90f7616ea170e92820775ed47e136208e04c967271c9ef615b6fbd08d9af0e3 \
489
+ --hash=sha256:68943d632f1f9e3dce98908e873b3a090f6cba1cbb1b892a9e8d97c938871fbe \
490
+ --hash=sha256:be55f8457cd1eac957af0c3f5ece7bc3f033f89b114ef30f710882717670b2a8 \
491
+ --hash=sha256:5d77adcd56a42d00cc1be30843d3426aa4e660cab4a61021dc84467123f7a00c \
492
+ --hash=sha256:829f97c8e258593b9daa80638aee3789b7df9da5cf1336035016d76f03b8860c \
493
+ --hash=sha256:801ec82e4188e935c7f5e22e006d01611d6b41661bba9fe45b60e7ac1a8f84de \
494
+ --hash=sha256:871b72c3643e516db4ecf20efe735deb27fe30ca17800e661d769faab45a18d7 \
495
+ --hash=sha256:655a83b0058ba47c7c52e4e2df5ecf484c1b0b0349805896dd350cbc416bdd91 \
496
+ --hash=sha256:9f47eabcd2ded7698106b05c2c338672d16a6f2a485e74481f524e2a23c2794b \
497
+ --hash=sha256:57751894f6618fd4308ed8e0c36c333e2f5469744c34729a27532b3db106ee20 \
498
+ --hash=sha256:7db8b751ad307d7cf238f02101e8e36a128a6cb199326e867d1398067381bff4 \
499
+ --hash=sha256:3033fbe1feb1b59394615a1cafaee85e49d01b51d54de0cbf6aa8e64182518a1 \
500
+ --hash=sha256:22b012ea2d065fd163ca096f4e37e47cd8b59cf4b0fd47bfca6abb93df70b34c \
501
+ --hash=sha256:b9a65733d103311331875c1dca05cb4606997fd33d6acfed695b1232ba1df193 \
502
+ --hash=sha256:502526a2cbfa431d9fc2a079bdd9061a2397b842bb6bc4239bb176da00993812 \
503
+ --hash=sha256:90fb88843d3902fe7c9586d439d1e8c05258f41da473952aa8b328d8b907498c \
504
+ --hash=sha256:89dca0ce00a2b49024df6325925555d406b14aa3efc2f752dbb5940c52c56b11 \
505
+ --hash=sha256:3168434d303babf495d4ba58fc22d6604f6e2afb97adc6a423e917dab828939c \
506
+ --hash=sha256:18498994b29e1cf86d505edcb7edbe814d133d2232d256db8c7a8ceb34d18cef \
507
+ --hash=sha256:772a91fc0e03eaf922c63badeca75e91baa80fe2f5f87bdaed4280662aad25c9 \
508
+ --hash=sha256:afa4107d1b306cdf8953edde0534562607fe8811b6c4d9a486298ad31de733b2 \
509
+ --hash=sha256:b4012d06c846dc2b80651b120e2cdd787b013deb39c09f407727ba90015c684f \
510
+ --hash=sha256:77ec3e7be99629898c9a6d24a09de089fa5356ee408cdffffe62d67bb75fdd72 \
511
+ --hash=sha256:6c738585d7a9961d8c2821a1eb3dcb978d14e238be3d70f0a706f7fa9316946b \
512
+ --hash=sha256:828989c45c245518065a110434246c44a56a8b2b2f6347d1409c787e6e4651ee \
513
+ --hash=sha256:82409ffe29d70fd733ff3c1025a602abb3e67405d41b9403b00b01debc4c9a29 \
514
+ --hash=sha256:41e0051336807468be450d52b8edd12ac60bebaa97fe10c8b660f116e50b30e4 \
515
+ --hash=sha256:b03ae6f1a1878233ac620c98f3459f79fd77c7e3c2b20d460284e1fb370557d4 \
516
+ --hash=sha256:4390e9ce199fc1951fcfa65795f239a8a4944117b5935a9317fb320e7767b40f \
517
+ --hash=sha256:40e1ce476a7804b0fb74bcfa80b0a2206ea6a882938eaba917f7a0f004b42502 \
518
+ --hash=sha256:a0a06a052c5f37b4ed81c613a455a81f9a3a69429b4fd7bb913c3fa98abefc20 \
519
+ --hash=sha256:03150abd92771742d4a8cd6f2fa6246d847dcd2e332a18d0c15cc75bf6703040 \
520
+ --hash=sha256:15c42fb9dea42465dfd902fb0ecf584b8848ceb28b41ee2b58f866411be33f07 \
521
+ --hash=sha256:51e0e543a33ed92db9f5ef69a0356e0b1a7a6b6a71b80df99f1d181ae5875636 \
522
+ --hash=sha256:3dd6caf940756101205dffc5367babf288a30043d35f80936f9bfb37f8355b32 \
523
+ --hash=sha256:f1ff2ee69f10f13a9596480335f406dd1f70c3650349e2be67ca3139280cade0 \
524
+ --hash=sha256:276a5ca930c913f714e372b2591a22c4bd3b81a418c0f6635ba832daec1cbcfc \
525
+ --hash=sha256:73bd195e43f3fadecfc50c682f5055ec32ee2c933243cafbfdec69ab1aa87cad \
526
+ --hash=sha256:1c7c8ae3864846fc95f4611c78129301e203aaa2af813b703c55d10cc1628535 \
527
+ --hash=sha256:2e0918e03aa0c72ea56edbb00d4d664294815aa11291a11504a377ea018330d3 \
528
+ --hash=sha256:b0915e734b33a474d76c28e07292f196cdf2a590a0d25bcc06e64e545f2d146c \
529
+ --hash=sha256:af0372acb5d3598f36ec0914deed2a63f6bcdb7b606da04dc19a88d31bf0c05b \
530
+ --hash=sha256:ad58d27a5b0262c0c19b47d54c5802db9b34d38bbf886665b626aff83c74bacd \
531
+ --hash=sha256:97aabc5c50312afa5e0a2b07c17d4ac5e865b250986f8afe2b02d772567a380c \
532
+ --hash=sha256:9aaa107275d8527e9d6e7670b64aabaaa36e5b6bd71a1015ddd21da0d4e06448 \
533
+ --hash=sha256:bac18ab8d2d1e6b4ce25e3424f709aceef668347db8637c2296bcf41acb7cf48 \
534
+ --hash=sha256:b472b5ea442148d1c3e2209f20f1e0bb0eb556538690fa70b5e1f79fa0ba8dc2 \
535
+ --hash=sha256:ab388aaa3f6ce52ac1cb8e122c4bd46657c15905904b3120a6248b5b8b0bc228 \
536
+ --hash=sha256:dbb8e7f2abee51cef77673be97760abff1674ed32847ce04b4af90f610144c7b \
537
+ --hash=sha256:bca31dd6014cb8b0b2db1e46081b0ca7d936f856da3b39744aef499db5d84d02 \
538
+ --hash=sha256:c7025dce65566eb6e89f56c9509d4f628fddcedb131d9465cacd3d8bac337e7e \
539
+ --hash=sha256:ebf2029c1f464c59b8bdbe5143c79fa2045a581ac53679733d3a91d400ff9efb \
540
+ --hash=sha256:b59430236b8e58840a0dfb4099a0e8717ffb779c952426a69ae435ca1f57210c \
541
+ --hash=sha256:12ce4932caf2ddf3e41d17fc9c02d67126935a44b86df6a206cf0d7161548627 \
542
+ --hash=sha256:ae5331c23ce118c53b172fa64a4c037eb83c9165aba3a7ba9ddd3ec9fa64a699 \
543
+ --hash=sha256:0b07fffc13f474264c336298d1b4ce01d9c5a011415b79d4ee5527bb69ae6f65 \
544
+ --hash=sha256:073adb2ae23431d3b9bcbcff3fe698b62ed47211d0716b067385538a1b0f28b8 \
545
+ --hash=sha256:c935a22a557a560108d780f9a0fc426dd7459940dc54faa49d83249c8d3e760f
546
+ prompt-toolkit==3.0.31; python_full_version >= "3.6.2" and python_version >= "3.8" \
547
+ --hash=sha256:9696f386133df0fc8ca5af4895afe5d78f5fcfe5258111c2a79a1c3e41ffa96d \
548
+ --hash=sha256:9ada952c9d1787f52ff6d5f3484d0b4df8952787c087edf6a1f7c2cb1ea88148
549
+ protobuf==3.19.6; python_version >= "3.7" \
550
+ --hash=sha256:010be24d5a44be7b0613750ab40bc8b8cedc796db468eae6c779b395f50d1fa1 \
551
+ --hash=sha256:11478547958c2dfea921920617eb457bc26867b0d1aa065ab05f35080c5d9eb6 \
552
+ --hash=sha256:559670e006e3173308c9254d63facb2c03865818f22204037ab76f7a0ff70b5f \
553
+ --hash=sha256:347b393d4dd06fb93a77620781e11c058b3b0a5289262f094379ada2920a3730 \
554
+ --hash=sha256:a8ce5ae0de28b51dff886fb922012dad885e66176663950cb2344c0439ecb473 \
555
+ --hash=sha256:90b0d02163c4e67279ddb6dc25e063db0130fc299aefabb5d481053509fae5c8 \
556
+ --hash=sha256:30f5370d50295b246eaa0296533403961f7e64b03ea12265d6dfce3a391d8992 \
557
+ --hash=sha256:0c0714b025ec057b5a7600cb66ce7c693815f897cfda6d6efb58201c472e3437 \
558
+ --hash=sha256:5057c64052a1f1dd7d4450e9aac25af6bf36cfbfb3a1cd89d16393a036c49157 \
559
+ --hash=sha256:bb6776bd18f01ffe9920e78e03a8676530a5d6c5911934c6a1ac6eb78973ecb6 \
560
+ --hash=sha256:84a04134866861b11556a82dd91ea6daf1f4925746b992f277b84013a7cc1229 \
561
+ --hash=sha256:4bc98de3cdccfb5cd769620d5785b92c662b6bfad03a202b83799b6ed3fa1fa7 \
562
+ --hash=sha256:aa3b82ca1f24ab5326dcf4ea00fcbda703e986b22f3d27541654f749564d778b \
563
+ --hash=sha256:2b2d2913bcda0e0ec9a784d194bc490f5dc3d9d71d322d070b11a0ade32ff6ba \
564
+ --hash=sha256:d0b635cefebd7a8a0f92020562dead912f81f401af7e71f16bf9506ff3bdbb38 \
565
+ --hash=sha256:7a552af4dc34793803f4e735aabe97ffc45962dfd3a237bdde242bff5a3de684 \
566
+ --hash=sha256:0469bc66160180165e4e29de7f445e57a34ab68f49357392c5b2f54c656ab25e \
567
+ --hash=sha256:91d5f1e139ff92c37e0ff07f391101df77e55ebb97f46bbc1535298d72019462 \
568
+ --hash=sha256:c0ccd3f940fe7f3b35a261b1dd1b4fc850c8fde9f74207015431f174be5976b3 \
569
+ --hash=sha256:30a15015d86b9c3b8d6bf78d5b8c7749f2512c29f168ca259c9d7727604d0e39 \
570
+ --hash=sha256:878b4cd080a21ddda6ac6d1e163403ec6eea2e206cf225982ae04567d39be7b0 \
571
+ --hash=sha256:5a0d7539a1b1fb7e76bf5faa0b44b30f812758e989e59c40f77a7dab320e79b9 \
572
+ --hash=sha256:bbf5cea5048272e1c60d235c7bd12ce1b14b8a16e76917f371c718bd3005f045 \
573
+ --hash=sha256:14082457dc02be946f60b15aad35e9f5c69e738f80ebbc0900a19bc83734a5a4 \
574
+ --hash=sha256:5f5540d57a43042389e87661c6eaa50f47c19c6176e8cf1c4f287aeefeccb5c4
575
+ psutil==5.9.3; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.7" \
576
+ --hash=sha256:b4a247cd3feaae39bb6085fcebf35b3b8ecd9b022db796d89c8f05067ca28e71 \
577
+ --hash=sha256:5fa88e3d5d0b480602553d362c4b33a63e0c40bfea7312a7bf78799e01e0810b \
578
+ --hash=sha256:767ef4fa33acda16703725c0473a91e1832d296c37c63896c7153ba81698f1ab \
579
+ --hash=sha256:9a4af6ed1094f867834f5f07acd1250605a0874169a5fcadbcec864aec2496a6 \
580
+ --hash=sha256:fa5e32c7d9b60b2528108ade2929b115167fe98d59f89555574715054f50fa31 \
581
+ --hash=sha256:fe79b4ad4836e3da6c4650cb85a663b3a51aef22e1a829c384e18fae87e5e727 \
582
+ --hash=sha256:db8e62016add2235cc87fb7ea000ede9e4ca0aa1f221b40cef049d02d5d2593d \
583
+ --hash=sha256:941a6c2c591da455d760121b44097781bc970be40e0e43081b9139da485ad5b7 \
584
+ --hash=sha256:71b1206e7909792d16933a0d2c1c7f04ae196186c51ba8567abae1d041f06dcb \
585
+ --hash=sha256:f57d63a2b5beaf797b87024d018772439f9d3103a395627b77d17a8d72009543 \
586
+ --hash=sha256:e7507f6c7b0262d3e7b0eeda15045bf5881f4ada70473b87bc7b7c93b992a7d7 \
587
+ --hash=sha256:1b540599481c73408f6b392cdffef5b01e8ff7a2ac8caae0a91b8222e88e8f1e \
588
+ --hash=sha256:547ebb02031fdada635452250ff39942db8310b5c4a8102dfe9384ee5791e650 \
589
+ --hash=sha256:d8c3cc6bb76492133474e130a12351a325336c01c96a24aae731abf5a47fe088 \
590
+ --hash=sha256:07d880053c6461c9b89cd5d4808f3b8336665fa3acdefd6777662c5ed73a851a \
591
+ --hash=sha256:5e8b50241dd3c2ed498507f87a6602825073c07f3b7e9560c58411c14fe1e1c9 \
592
+ --hash=sha256:828c9dc9478b34ab96be75c81942d8df0c2bb49edbb481f597314d92b6441d89 \
593
+ --hash=sha256:ed15edb14f52925869250b1375f0ff58ca5c4fa8adefe4883cfb0737d32f5c02 \
594
+ --hash=sha256:d266cd05bd4a95ca1c2b9b5aac50d249cf7c94a542f47e0b22928ddf8b80d1ef \
595
+ --hash=sha256:7e4939ff75149b67aef77980409f156f0082fa36accc475d45c705bb00c6c16a \
596
+ --hash=sha256:68fa227c32240c52982cb931801c5707a7f96dd8927f9102d6c7771ea1ff5698 \
597
+ --hash=sha256:beb57d8a1ca0ae0eb3d08ccaceb77e1a6d93606f0e1754f0d60a6ebd5c288837 \
598
+ --hash=sha256:12500d761ac091f2426567f19f95fd3f15a197d96befb44a5c1e3cbe6db5752c \
599
+ --hash=sha256:ba38cf9984d5462b506e239cf4bc24e84ead4b1d71a3be35e66dad0d13ded7c1 \
600
+ --hash=sha256:46907fa62acaac364fff0b8a9da7b360265d217e4fdeaca0a2397a6883dffba2 \
601
+ --hash=sha256:a04a1836894c8279e5e0a0127c0db8e198ca133d28be8a2a72b4db16f6cf99c1 \
602
+ --hash=sha256:8a4e07611997acf178ad13b842377e3d8e9d0a5bac43ece9bfc22a96735d9a4f \
603
+ --hash=sha256:6ced1ad823ecfa7d3ce26fe8aa4996e2e53fb49b7fed8ad81c80958501ec0619 \
604
+ --hash=sha256:35feafe232d1aaf35d51bd42790cbccb882456f9f18cdc411532902370d660df \
605
+ --hash=sha256:538fcf6ae856b5e12d13d7da25ad67f02113c96f5989e6ad44422cb5994ca7fc \
606
+ --hash=sha256:a3d81165b8474087bb90ec4f333a638ccfd1d69d34a9b4a1a7eaac06648f9fbe \
607
+ --hash=sha256:3a7826e68b0cf4ce2c1ee385d64eab7d70e3133171376cac53d7c1790357ec8f \
608
+ --hash=sha256:9ec296f565191f89c48f33d9544d8d82b0d2af7dd7d2d4e6319f27a818f8d1cc \
609
+ --hash=sha256:9ec95df684583b5596c82bb380c53a603bb051cf019d5c849c47e117c5064395 \
610
+ --hash=sha256:4bd4854f0c83aa84a5a40d3b5d0eb1f3c128f4146371e03baed4589fe4f3c931 \
611
+ --hash=sha256:7ccfcdfea4fc4b0a02ca2c31de7fcd186beb9cff8207800e14ab66f79c773af6
612
+ ptyprocess==0.7.0; sys_platform != "win32" and python_version >= "3.8" \
613
+ --hash=sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35 \
614
+ --hash=sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220
615
+ pure-eval==0.2.2; python_version >= "3.8" \
616
+ --hash=sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350 \
617
+ --hash=sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3
618
+ py==1.11.0; python_version >= "3.7" and python_full_version < "3.0.0" and implementation_name == "pypy" or implementation_name == "pypy" and python_version >= "3.7" and python_full_version >= "3.5.0" \
619
+ --hash=sha256:607c53218732647dff4acdfcd50cb62615cedf612e72d1724fb1a0cc6405b378 \
620
+ --hash=sha256:51c75c4126074b472f746a24399ad32f6053d1b34b68d2fa41e558e6f4a98719
621
+ pyarrow==10.0.0; python_version >= "3.7" \
622
+ --hash=sha256:10e031794d019425d34406edffe7e32157359e9455f9edb97a1732f8dabf802f \
623
+ --hash=sha256:e4c6da9f9e1ff96781ee1478f7cc0860e66c23584887b8e297c4b9905c3c9066 \
624
+ --hash=sha256:4051664d354b14939b5da35cfa77821ade594bc1cf56dd2032b3068c96697d74 \
625
+ --hash=sha256:65d4a312f3ced318423704355acaccc7f7bdfe242472e59bdd54aa0f8837adf8 \
626
+ --hash=sha256:758284e1ebd3f2a9abb30544bfec28d151a398bb7c0f2578cbca5ee5b000364a \
627
+ --hash=sha256:f329951d56b3b943c353f7b27c894e02367a7efbb9fef7979c6b24e02dbfcf55 \
628
+ --hash=sha256:511735040b83f2993f78d7fb615e7b88253d75f41500e87e587c40156ff88120 \
629
+ --hash=sha256:3d2694f08c8d4482d14e3798ff036dbd81ae6b1c47948f52515e1aa90fbec3f0 \
630
+ --hash=sha256:c79300e1a3e23f2bf4defcf0d70ff5ea25ef6ebf6f121d8670ee14bb662bb7ca \
631
+ --hash=sha256:f76157d9579571c865860e5fd004537c03e21139db76692d96fd8a186adab1f2 \
632
+ --hash=sha256:69b8a1fd99201178799b02f18498633847109b701856ec762f314352a431b7d0 \
633
+ --hash=sha256:68ccb82c04c0f7abf7a95541d5e9d9d94290fc66a2d36d3f6ea0777f40c15654 \
634
+ --hash=sha256:b45f969ed924282e9d4ede38f3430630d809c36dbff65452cabce03141943d28 \
635
+ --hash=sha256:b9f63ceb8346aac0bcb487fafe9faca642ad448ca649fcf66a027c6e120cbc12 \
636
+ --hash=sha256:7ce026274cd5d9934cd3694e89edecde4e036018bbc6cb735fd33b9e967e7d47 \
637
+ --hash=sha256:7e6b837cc44cd62a0e280c8fc4de94ebce503d6d1190e6e94157ab49a8bea67b \
638
+ --hash=sha256:7be7f42f713068293308c989a4a3a2de03b70199bdbe753901c6595ff8640c64 \
639
+ --hash=sha256:b3e3148468d3eed3779d68241f1d13ed4ee7cca4c6dbc7c07e5062b93ad4da33 \
640
+ --hash=sha256:2d326a9d47ac237d81b8c4337e9d30a0b361835b536fc7ea53991455ce761fbd \
641
+ --hash=sha256:25f51dca780fc22cfd7ac30f6bdfe70eb99145aee9acfda987f2c49955d66ed9 \
642
+ --hash=sha256:d45a59e2f47826544c0ca70bc0f7ed8ffa5ad23f93b0458230c7e983bcad1acf \
643
+ --hash=sha256:b153b05765393557716e3729cf988442b3ae4f5567364ded40d58c07feed27c2
644
+ pyasn1-modules==0.2.8; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.7" \
645
+ --hash=sha256:905f84c712230b2c592c19470d3ca8d552de726050d1d1716282a1f6146be65e \
646
+ --hash=sha256:0fe1b68d1e486a1ed5473f1302bd991c1611d319bba158e98b106ff86e1d7199 \
647
+ --hash=sha256:fe0644d9ab041506b62782e92b06b8c68cca799e1a9636ec398675459e031405 \
648
+ --hash=sha256:a99324196732f53093a84c4369c996713eb8c89d360a496b599fb1a9c47fc3eb \
649
+ --hash=sha256:0845a5582f6a02bb3e1bde9ecfc4bfcae6ec3210dd270522fee602365430c3f8 \
650
+ --hash=sha256:a50b808ffeb97cb3601dd25981f6b016cbb3d31fbf57a8b8a87428e6158d0c74 \
651
+ --hash=sha256:f39edd8c4ecaa4556e989147ebf219227e2cd2e8a43c7e7fcb1f1c18c5fd6a3d \
652
+ --hash=sha256:b80486a6c77252ea3a3e9b1e360bc9cf28eaac41263d173c032581ad2f20fe45 \
653
+ --hash=sha256:65cebbaffc913f4fe9e4808735c95ea22d7a7775646ab690518c056784bc21b4 \
654
+ --hash=sha256:15b7c67fabc7fc240d87fb9aabf999cf82311a6d6fb2c70d00d3d0604878c811 \
655
+ --hash=sha256:426edb7a5e8879f1ec54a1864f16b882c2837bfd06eee62f2c982315ee2473ed \
656
+ --hash=sha256:cbac4bc38d117f2a49aeedec4407d23e8866ea4ac27ff2cf7fb3e5b570df19e0 \
657
+ --hash=sha256:c29a5e5cc7a3f05926aff34e097e84f8589cd790ce0ed41b67aed6857b26aafd
658
+ pyasn1==0.4.8; python_version >= "3.7" and python_full_version < "3.0.0" and python_version < "4" and (python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.7") or python_full_version >= "3.6.0" and python_version >= "3.7" and python_version < "4" and (python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.7") \
659
+ --hash=sha256:fec3e9d8e36808a28efb59b489e4528c10ad0f480e57dcc32b4de5c9d8c9fdf3 \
660
+ --hash=sha256:0458773cfe65b153891ac249bcf1b5f8f320b7c2ce462151f8fa74de8934becf \
661
+ --hash=sha256:5c9414dcfede6e441f7e8f81b43b34e834731003427e5b09e4e00e3172a10f00 \
662
+ --hash=sha256:6e7545f1a61025a4e58bb336952c5061697da694db1cae97b116e9c46abcf7c8 \
663
+ --hash=sha256:39c7e2ec30515947ff4e87fb6f456dfc6e84857d34be479c9d4a4ba4bf46aa5d \
664
+ --hash=sha256:78fa6da68ed2727915c4767bb386ab32cdba863caa7dbe473eaae45f9959da86 \
665
+ --hash=sha256:08c3c53b75eaa48d71cf8c710312316392ed40899cb34710d092e96745a358b7 \
666
+ --hash=sha256:03840c999ba71680a131cfaee6fab142e1ed9bbd9c693e285cc6aca0d555e576 \
667
+ --hash=sha256:7ab8a544af125fb704feadb008c99a88805126fb525280b2270bb25cc1d78a12 \
668
+ --hash=sha256:e89bf84b5437b532b0803ba5c9a5e054d21fec423a89952a74f87fa2c9b7bce2 \
669
+ --hash=sha256:014c0e9976956a08139dc0712ae195324a75e142284d5f87f1a87ee1b068a359 \
670
+ --hash=sha256:99fcc3c8d804d1bc6d9a099921e39d827026409a58f2a720dcdb89374ea0c776 \
671
+ --hash=sha256:aef77c9fb94a3ac588e87841208bdec464471d9871bd5050a287cc9a475cd0ba
672
+ pycparser==2.21; python_version >= "3.7" and python_full_version < "3.0.0" and implementation_name == "pypy" or implementation_name == "pypy" and python_version >= "3.7" and python_full_version >= "3.4.0" \
673
+ --hash=sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9 \
674
+ --hash=sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206
675
+ pydeck==0.8.0b4; python_version >= "3.7" \
676
+ --hash=sha256:714ec23fb21e47171e4ae350668ca8a1552bae29de94e5e749bd595a60100a09 \
677
+ --hash=sha256:103f303ef0a8f18edb10444d8136b901514779e84e340a86218e67427559e6d2
678
+ pygments==2.13.0; python_full_version >= "3.6.3" and python_full_version < "4.0.0" and python_version >= "3.8"
679
+ pympler==1.0.1; python_version >= "3.7"
680
+ pyngrok==5.1.0; python_version >= "3.5"
681
+ pyparsing==3.0.9; python_full_version >= "3.6.8" and python_version >= "3.8" \
682
+ --hash=sha256:5026bae9a10eeaefb61dab2f09052b9f4307d44aee4eda64b309723d8d206bbc \
683
+ --hash=sha256:2b020ecf7d21b687f219b71ecad3631f644a47f01403fa1d1036b0c6416d70fb
684
+ pyrsistent==0.18.1; python_version >= "3.7" \
685
+ --hash=sha256:df46c854f490f81210870e509818b729db4488e1f30f2a1ce1698b2295a878d1 \
686
+ --hash=sha256:5d45866ececf4a5fff8742c25722da6d4c9e180daa7b405dc0a2a2790d668c26 \
687
+ --hash=sha256:4ed6784ceac462a7d6fcb7e9b663e93b9a6fb373b7f43594f9ff68875788e01e \
688
+ --hash=sha256:e4f3149fd5eb9b285d6bfb54d2e5173f6a116fe19172686797c056672689daf6 \
689
+ --hash=sha256:636ce2dc235046ccd3d8c56a7ad54e99d5c1cd0ef07d9ae847306c91d11b5fec \
690
+ --hash=sha256:e92a52c166426efbe0d1ec1332ee9119b6d32fc1f0bbfd55d5c1088070e7fc1b \
691
+ --hash=sha256:d7a096646eab884bf8bed965bad63ea327e0d0c38989fc83c5ea7b8a87037bfc \
692
+ --hash=sha256:cdfd2c361b8a8e5d9499b9082b501c452ade8bbf42aef97ea04854f4a3f43b22 \
693
+ --hash=sha256:7ec335fc998faa4febe75cc5268a9eac0478b3f681602c1f27befaf2a1abe1d8 \
694
+ --hash=sha256:6455fc599df93d1f60e1c5c4fe471499f08d190d57eca040c0ea182301321286 \
695
+ --hash=sha256:fd8da6d0124efa2f67d86fa70c851022f87c98e205f0594e1fae044e7119a5a6 \
696
+ --hash=sha256:7bfe2388663fd18bd8ce7db2c91c7400bf3e1a9e8bd7d63bf7e77d39051b85ec \
697
+ --hash=sha256:0e3e1fcc45199df76053026a51cc59ab2ea3fc7c094c6627e93b7b44cdae2c8c \
698
+ --hash=sha256:b568f35ad53a7b07ed9b1b2bae09eb15cdd671a5ba5d2c66caee40dbf91c68ca \
699
+ --hash=sha256:d1b96547410f76078eaf66d282ddca2e4baae8964364abb4f4dcdde855cd123a \
700
+ --hash=sha256:f87cc2863ef33c709e237d4b5f4502a62a00fab450c9e020892e8e2ede5847f5 \
701
+ --hash=sha256:6bc66318fb7ee012071b2792024564973ecc80e9522842eb4e17743604b5e045 \
702
+ --hash=sha256:914474c9f1d93080338ace89cb2acee74f4f666fb0424896fcfb8d86058bf17c \
703
+ --hash=sha256:1b34eedd6812bf4d33814fca1b66005805d3640ce53140ab8bbb1e2651b0d9bc \
704
+ --hash=sha256:e24a828f57e0c337c8d8bb9f6b12f09dfdf0273da25fda9e314f0b684b415a07 \
705
+ --hash=sha256:d4d61f8b993a7255ba714df3aca52700f8125289f84f704cf80916517c46eb96
706
+ python-dateutil==2.8.2; python_version >= "3.8" and python_full_version < "3.0.0" or python_full_version >= "3.3.0" and python_version >= "3.8" \
707
+ --hash=sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86 \
708
+ --hash=sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9
709
+ pytz-deprecation-shim==0.1.0.post0; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.7"
710
+ pytz==2022.5; python_version >= "3.8" \
711
+ --hash=sha256:335ab46900b1465e714b4fda4963d87363264eb662aab5e65da039c25f1f5b22 \
712
+ --hash=sha256:c4d88f472f54d615e9cd582a5004d1e5f624854a6a27a6211591c251f22a6914
713
+ pywavelets==1.4.1; python_version >= "3.8" \
714
+ --hash=sha256:d854411eb5ee9cb4bc5d0e66e3634aeb8f594210f6a1bed96dbed57ec70f181c \
715
+ --hash=sha256:231b0e0b1cdc1112f4af3c24eea7bf181c418d37922a67670e9bf6cfa2d544d4 \
716
+ --hash=sha256:754fa5085768227c4f4a26c1e0c78bc509a266d9ebd0eb69a278be7e3ece943c \
717
+ --hash=sha256:da7b9c006171be1f9ddb12cc6e0d3d703b95f7f43cb5e2c6f5f15d3233fcf202 \
718
+ --hash=sha256:67a0d28a08909f21400cb09ff62ba94c064882ffd9e3a6b27880a111211d59bd \
719
+ --hash=sha256:91d3d393cffa634f0e550d88c0e3f217c96cfb9e32781f2960876f1808d9b45b \
720
+ --hash=sha256:64c6bac6204327321db30b775060fbe8e8642316e6bff17f06b9f34936f88875 \
721
+ --hash=sha256:3f19327f2129fb7977bc59b966b4974dfd72879c093e44a7287500a7032695de \
722
+ --hash=sha256:ad987748f60418d5f4138db89d82ba0cb49b086e0cbb8fd5c3ed4a814cfb705e \
723
+ --hash=sha256:875d4d620eee655346e3589a16a73790cf9f8917abba062234439b594e706784 \
724
+ --hash=sha256:7231461d7a8eb3bdc7aa2d97d9f67ea5a9f8902522818e7e2ead9c2b3408eeb1 \
725
+ --hash=sha256:daf0aa79842b571308d7c31a9c43bc99a30b6328e6aea3f50388cd8f69ba7dbc \
726
+ --hash=sha256:ab7da0a17822cd2f6545626946d3b82d1a8e106afc4b50e3387719ba01c7b966 \
727
+ --hash=sha256:578af438a02a86b70f1975b546f68aaaf38f28fb082a61ceb799816049ed18aa \
728
+ --hash=sha256:9cb5ca8d11d3f98e89e65796a2125be98424d22e5ada360a0dbabff659fca0fc \
729
+ --hash=sha256:058b46434eac4c04dd89aeef6fa39e4b6496a951d78c500b6641fd5b2cc2f9f4 \
730
+ --hash=sha256:de7cd61a88a982edfec01ea755b0740e94766e00a1ceceeafef3ed4c85c605cd \
731
+ --hash=sha256:7ab8d9db0fe549ab2ee0bea61f614e658dd2df419d5b75fba47baa761e95f8f2 \
732
+ --hash=sha256:23bafd60350b2b868076d976bdd92f950b3944f119b4754b1d7ff22b7acbf6c6 \
733
+ --hash=sha256:d0e56cd7a53aed3cceca91a04d62feb3a0aca6725b1912d29546c26f6ea90426 \
734
+ --hash=sha256:030670a213ee8fefa56f6387b0c8e7d970c7f7ad6850dc048bd7c89364771b9b \
735
+ --hash=sha256:71ab30f51ee4470741bb55fc6b197b4a2b612232e30f6ac069106f0156342356 \
736
+ --hash=sha256:47cac4fa25bed76a45bc781a293c26ac63e8eaae9eb8f9be961758d22b58649c \
737
+ --hash=sha256:88aa5449e109d8f5e7f0adef85f7f73b1ab086102865be64421a3a3d02d277f4 \
738
+ --hash=sha256:6437af3ddf083118c26d8f97ab43b0724b956c9f958e9ea788659f6a2834ba93
739
+ pywin32==304; sys_platform == "win32" and platform_python_implementation != "PyPy" and python_version >= "3.7" \
740
+ --hash=sha256:3c7bacf5e24298c86314f03fa20e16558a4e4138fc34615d7de4070c23e65af3 \
741
+ --hash=sha256:4f32145913a2447736dad62495199a8e280a77a0ca662daa2332acf849f0be48 \
742
+ --hash=sha256:d3ee45adff48e0551d1aa60d2ec066fec006083b791f5c3527c40cd8aefac71f \
743
+ --hash=sha256:30c53d6ce44c12a316a06c153ea74152d3b1342610f1b99d40ba2795e5af0269 \
744
+ --hash=sha256:7ffa0c0fa4ae4077e8b8aa73800540ef8c24530057768c3ac57c609f99a14fd4 \
745
+ --hash=sha256:cbbe34dad39bdbaa2889a424d28752f1b4971939b14b1bb48cbf0182a3bcfc43 \
746
+ --hash=sha256:be253e7b14bc601718f014d2832e4c18a5b023cbe72db826da63df76b77507a1 \
747
+ --hash=sha256:de9827c23321dcf43d2f288f09f3b6d772fee11e809015bdae9e69fe13213988 \
748
+ --hash=sha256:f64c0377cf01b61bd5e76c25e1480ca8ab3b73f0c4add50538d332afdf8f69c5 \
749
+ --hash=sha256:bb2ea2aa81e96eee6a6b79d87e1d1648d3f8b87f9a64499e0b92b30d141e76df \
750
+ --hash=sha256:94037b5259701988954931333aafd39cf897e990852115656b014ce72e052e96 \
751
+ --hash=sha256:ead865a2e179b30fb717831f73cf4373401fc62fbc3455a0889a7ddac848f83e \
752
+ --hash=sha256:25746d841201fd9f96b648a248f731c1dec851c9a08b8e33da8b56148e4c65cc \
753
+ --hash=sha256:d24a3382f013b21aa24a5cfbfad5a2cd9926610c0affde3e8ab5b3d7dbcf4ac9
754
+ pyyaml==6.0; python_version >= "3.6" \
755
+ --hash=sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53 \
756
+ --hash=sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c \
757
+ --hash=sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc \
758
+ --hash=sha256:a80a78046a72361de73f8f395f1f1e49f956c6be882eed58505a15f3e430962b \
759
+ --hash=sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5 \
760
+ --hash=sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513 \
761
+ --hash=sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a \
762
+ --hash=sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86 \
763
+ --hash=sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f \
764
+ --hash=sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92 \
765
+ --hash=sha256:98c4d36e99714e55cfbaaee6dd5badbc9a1ec339ebfc3b1f52e293aee6bb71a4 \
766
+ --hash=sha256:0283c35a6a9fbf047493e3a0ce8d79ef5030852c51e9d911a27badfde0605293 \
767
+ --hash=sha256:07751360502caac1c067a8132d150cf3d61339af5691fe9e87803040dbc5db57 \
768
+ --hash=sha256:819b3830a1543db06c4d4b865e70ded25be52a2e0631ccd2f6a47a2822f2fd7c \
769
+ --hash=sha256:473f9edb243cb1935ab5a084eb238d842fb8f404ed2193a915d1784b5a6b5fc0 \
770
+ --hash=sha256:0ce82d761c532fe4ec3f87fc45688bdd3a4c1dc5e0b4a19814b9009a29baefd4 \
771
+ --hash=sha256:231710d57adfd809ef5d34183b8ed1eeae3f76459c18fb4a0b373ad56bedcdd9 \
772
+ --hash=sha256:c5687b8d43cf58545ade1fe3e055f70eac7a5a1a0bf42824308d868289a95737 \
773
+ --hash=sha256:d15a181d1ecd0d4270dc32edb46f7cb7733c7c508857278d3d378d14d606db2d \
774
+ --hash=sha256:0b4624f379dab24d3725ffde76559cff63d9ec94e1736b556dacdfebe5ab6d4b \
775
+ --hash=sha256:213c60cd50106436cc818accf5baa1aba61c0189ff610f64f4a3e8c6726218ba \
776
+ --hash=sha256:9fa600030013c4de8165339db93d182b9431076eb98eb40ee068700c9c813e34 \
777
+ --hash=sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287 \
778
+ --hash=sha256:d4eccecf9adf6fbcc6861a38015c2a64f38b9d94838ac1810a9023a0609e1b78 \
779
+ --hash=sha256:1e4747bc279b4f613a09eb64bba2ba602d8a6664c6ce6396a4d0cd413a50ce07 \
780
+ --hash=sha256:055d937d65826939cb044fc8c9b08889e8c743fdc6a32b33e2390f66013e449b \
781
+ --hash=sha256:e61ceaab6f49fb8bdfaa0f92c4b57bcfbea54c09277b1b4f7ac376bfb7a7c174 \
782
+ --hash=sha256:d67d839ede4ed1b28a4e8909735fc992a923cdb84e618544973d7dfc71540803 \
783
+ --hash=sha256:cba8c411ef271aa037d7357a2bc8f9ee8b58b9965831d9e51baf703280dc73d3 \
784
+ --hash=sha256:40527857252b61eacd1d9af500c3337ba8deb8fc298940291486c465c8b46ec0 \
785
+ --hash=sha256:b5b9eccad747aabaaffbc6064800670f0c297e52c12754eb1d976c57e4f74dcb \
786
+ --hash=sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c \
787
+ --hash=sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2
788
+ pyzmq==24.0.1; python_version >= "3.7" \
789
+ --hash=sha256:28b119ba97129d3001673a697b7cce47fe6de1f7255d104c2f01108a5179a066 \
790
+ --hash=sha256:bcbebd369493d68162cddb74a9c1fcebd139dfbb7ddb23d8f8e43e6c87bac3a6 \
791
+ --hash=sha256:ae61446166983c663cee42c852ed63899e43e484abf080089f771df4b9d272ef \
792
+ --hash=sha256:87f7ac99b15270db8d53f28c3c7b968612993a90a5cf359da354efe96f5372b4 \
793
+ --hash=sha256:9dca7c3956b03b7663fac4d150f5e6d4f6f38b2462c1e9afd83bcf7019f17913 \
794
+ --hash=sha256:8c78bfe20d4c890cb5580a3b9290f700c570e167d4cdcc55feec07030297a5e3 \
795
+ --hash=sha256:48f721f070726cd2a6e44f3c33f8ee4b24188e4b816e6dd8ba542c8c3bb5b246 \
796
+ --hash=sha256:afe1f3bc486d0ce40abb0a0c9adb39aed3bbac36ebdc596487b0cceba55c21c1 \
797
+ --hash=sha256:3e6192dbcefaaa52ed81be88525a54a445f4b4fe2fffcae7fe40ebb58bd06bfd \
798
+ --hash=sha256:86de64468cad9c6d269f32a6390e210ca5ada568c7a55de8e681ca3b897bb340 \
799
+ --hash=sha256:838812c65ed5f7c2bd11f7b098d2e5d01685a3f6d1f82849423b570bae698c00 \
800
+ --hash=sha256:dfb992dbcd88d8254471760879d48fb20836d91baa90f181c957122f9592b3dc \
801
+ --hash=sha256:7abddb2bd5489d30ffeb4b93a428130886c171b4d355ccd226e83254fcb6b9ef \
802
+ --hash=sha256:94010bd61bc168c103a5b3b0f56ed3b616688192db7cd5b1d626e49f28ff51b3 \
803
+ --hash=sha256:8242543c522d84d033fe79be04cb559b80d7eb98ad81b137ff7e0a9020f00ace \
804
+ --hash=sha256:ccb94342d13e3bf3ffa6e62f95b5e3f0bc6bfa94558cb37f4b3d09d6feb536ff \
805
+ --hash=sha256:6640f83df0ae4ae1104d4c62b77e9ef39be85ebe53f636388707d532bee2b7b8 \
806
+ --hash=sha256:a180dbd5ea5d47c2d3b716d5c19cc3fb162d1c8db93b21a1295d69585bfddac1 \
807
+ --hash=sha256:624321120f7e60336be8ec74a172ae7fba5c3ed5bf787cc85f7e9986c9e0ebc2 \
808
+ --hash=sha256:1724117bae69e091309ffb8255412c4651d3f6355560d9af312d547f6c5bc8b8 \
809
+ --hash=sha256:15975747462ec49fdc863af906bab87c43b2491403ab37a6d88410635786b0f4 \
810
+ --hash=sha256:b947e264f0e77d30dcbccbb00f49f900b204b922eb0c3a9f0afd61aaa1cedc3d \
811
+ --hash=sha256:0ec91f1bad66f3ee8c6deb65fa1fe418e8ad803efedd69c35f3b5502f43bd1dc \
812
+ --hash=sha256:db03704b3506455d86ec72c3358a779e9b1d07b61220dfb43702b7b668edcd0d \
813
+ --hash=sha256:e7e66b4e403c2836ac74f26c4b65d8ac0ca1eef41dfcac2d013b7482befaad83 \
814
+ --hash=sha256:7a23ccc1083c260fa9685c93e3b170baba45aeed4b524deb3f426b0c40c11639 \
815
+ --hash=sha256:fa0ae3275ef706c0309556061185dd0e4c4cd3b7d6f67ae617e4e677c7a41e2e \
816
+ --hash=sha256:f01de4ec083daebf210531e2cca3bdb1608dbbbe00a9723e261d92087a1f6ebc \
817
+ --hash=sha256:de4217b9eb8b541cf2b7fde4401ce9d9a411cc0af85d410f9d6f4333f43640be \
818
+ --hash=sha256:78068e8678ca023594e4a0ab558905c1033b2d3e806a0ad9e3094e231e115a33 \
819
+ --hash=sha256:77c2713faf25a953c69cf0f723d1b7dd83827b0834e6c41e3fb3bbc6765914a1 \
820
+ --hash=sha256:8bb4af15f305056e95ca1bd086239b9ebc6ad55e9f49076d27d80027f72752f6 \
821
+ --hash=sha256:0f14cffd32e9c4c73da66db97853a6aeceaac34acdc0fae9e5bbc9370281864c \
822
+ --hash=sha256:0108358dab8c6b27ff6b985c2af4b12665c1bc659648284153ee501000f5c107 \
823
+ --hash=sha256:d66689e840e75221b0b290b0befa86f059fb35e1ee6443bce51516d4d61b6b99 \
824
+ --hash=sha256:ae08ac90aa8fa14caafc7a6251bd218bf6dac518b7bff09caaa5e781119ba3f2 \
825
+ --hash=sha256:8421aa8c9b45ea608c205db9e1c0c855c7e54d0e9c2c2f337ce024f6843cab3b \
826
+ --hash=sha256:54d8b9c5e288362ec8595c1d98666d36f2070fd0c2f76e2b3c60fbad9bd76227 \
827
+ --hash=sha256:acbd0a6d61cc954b9f535daaa9ec26b0a60a0d4353c5f7c1438ebc88a359a47e \
828
+ --hash=sha256:47b11a729d61a47df56346283a4a800fa379ae6a85870d5a2e1e4956c828eedc \
829
+ --hash=sha256:abe6eb10122f0d746a0d510c2039ae8edb27bc9af29f6d1b05a66cc2401353ff \
830
+ --hash=sha256:07bec1a1b22dacf718f2c0e71b49600bb6a31a88f06527dfd0b5aababe3fa3f7 \
831
+ --hash=sha256:f0d945a85b70da97ae86113faf9f1b9294efe66bd4a5d6f82f2676d567338b66 \
832
+ --hash=sha256:1b7928bb7580736ffac5baf814097be342ba08d3cfdfb48e52773ec959572287 \
833
+ --hash=sha256:b946da90dc2799bcafa682692c1d2139b2a96ec3c24fa9fc6f5b0da782675330 \
834
+ --hash=sha256:c8840f064b1fb377cffd3efeaad2b190c14d4c8da02316dae07571252d20b31f \
835
+ --hash=sha256:4854f9edc5208f63f0841c0c667260ae8d6846cfa233c479e29fdc85d42ebd58 \
836
+ --hash=sha256:42d4f97b9795a7aafa152a36fe2ad44549b83a743fd3e77011136def512e6c2a \
837
+ --hash=sha256:52afb0ac962963fff30cf1be775bc51ae083ef4c1e354266ab20e5382057dd62 \
838
+ --hash=sha256:8bad8210ad4df68c44ff3685cca3cda448ee46e20d13edcff8909eba6ec01ca4 \
839
+ --hash=sha256:dabf1a05318d95b1537fd61d9330ef4313ea1216eea128a17615038859da3b3b \
840
+ --hash=sha256:5bd3d7dfd9cd058eb68d9a905dec854f86649f64d4ddf21f3ec289341386c44b \
841
+ --hash=sha256:e8012bce6836d3f20a6c9599f81dfa945f433dab4dbd0c4917a6fb1f998ab33d \
842
+ --hash=sha256:c31805d2c8ade9b11feca4674eee2b9cce1fec3e8ddb7bbdd961a09dc76a80ea \
843
+ --hash=sha256:3104f4b084ad5d9c0cb87445cc8cfd96bba710bef4a66c2674910127044df209 \
844
+ --hash=sha256:df0841f94928f8af9c7a1f0aaaffba1fb74607af023a152f59379c01c53aee58 \
845
+ --hash=sha256:a435ef8a3bd95c8a2d316d6e0ff70d0db524f6037411652803e118871d703333 \
846
+ --hash=sha256:2032d9cb994ce3b4cba2b8dfae08c7e25bc14ba484c770d4d3be33c27de8c45b \
847
+ --hash=sha256:bb5635c851eef3a7a54becde6da99485eecf7d068bd885ac8e6d173c4ecd68b0 \
848
+ --hash=sha256:83ea1a398f192957cb986d9206ce229efe0ee75e3c6635baff53ddf39bd718d5 \
849
+ --hash=sha256:941fab0073f0a54dc33d1a0460cb04e0d85893cb0c5e1476c785000f8b359409 \
850
+ --hash=sha256:0e8f482c44ccb5884bf3f638f29bea0f8dc68c97e38b2061769c4cb697f6140d \
851
+ --hash=sha256:613010b5d17906c4367609e6f52e9a2595e35d5cc27d36ff3f1b6fa6e954d944 \
852
+ --hash=sha256:65c94410b5a8355cfcf12fd600a313efee46ce96a09e911ea92cf2acf6708804 \
853
+ --hash=sha256:20e7eeb1166087db636c06cae04a1ef59298627f56fb17da10528ab52a14c87f \
854
+ --hash=sha256:a2712aee7b3834ace51738c15d9ee152cc5a98dc7d57dd93300461b792ab7b43 \
855
+ --hash=sha256:1a7c280185c4da99e0cc06c63bdf91f5b0b71deb70d8717f0ab870a43e376db8 \
856
+ --hash=sha256:858375573c9225cc8e5b49bfac846a77b696b8d5e815711b8d4ba3141e6e8879 \
857
+ --hash=sha256:80093b595921eed1a2cead546a683b9e2ae7f4a4592bb2ab22f70d30174f003a \
858
+ --hash=sha256:8f3f3154fde2b1ff3aa7b4f9326347ebc89c8ef425ca1db8f665175e6d3bd42f \
859
+ --hash=sha256:abb756147314430bee5d10919b8493c0ccb109ddb7f5dfd2fcd7441266a25b75 \
860
+ --hash=sha256:44e706bac34e9f50779cb8c39f10b53a4d15aebb97235643d3112ac20bd577b4 \
861
+ --hash=sha256:687700f8371643916a1d2c61f3fdaa630407dd205c38afff936545d7b7466066 \
862
+ --hash=sha256:216f5d7dbb67166759e59b0479bca82b8acf9bed6015b526b8eb10143fb08e77
863
+ requests-oauthlib==1.3.1; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.7" \
864
+ --hash=sha256:75beac4a47881eeb94d5ea5d6ad31ef88856affe2332b9aafb52c6452ccf0d7a \
865
+ --hash=sha256:2577c501a2fb8d05a304c09d090d6e47c306fef15809d102b327cf8364bddab5
866
+ requests==2.28.1; python_version >= "3.7" and python_version < "4" and (python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.7")
867
+ rich==12.6.0; python_full_version >= "3.6.3" and python_full_version < "4.0.0" and python_version >= "3.7" \
868
+ --hash=sha256:a4eb26484f2c82589bd9a17c73d32a010b1e29d89f1604cd9bf3a2097b81bb5e \
869
+ --hash=sha256:ba3a3775974105c221d31141f2c116f4fd65c5ceb0698657a11e9f295ec93fd0
870
+ rsa==4.9; python_version >= "3.6" and python_version < "4" and (python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.7")
871
+ scikit-image==0.19.3; python_version >= "3.7"
872
+ scipy==1.9.3; python_version >= "3.8" \
873
+ --hash=sha256:1884b66a54887e21addf9c16fb588720a8309a57b2e258ae1c7986d4444d3bc0 \
874
+ --hash=sha256:83b89e9586c62e787f5012e8475fbb12185bafb996a03257e9675cd73d3736dd \
875
+ --hash=sha256:1a72d885fa44247f92743fc20732ae55564ff2a519e8302fb7e18717c5355a8b \
876
+ --hash=sha256:d01e1dd7b15bd2449c8bfc6b7cc67d630700ed655654f0dfcf121600bad205c9 \
877
+ --hash=sha256:68239b6aa6f9c593da8be1509a05cb7f9efe98b80f43a5861cd24c7557e98523 \
878
+ --hash=sha256:b41bc822679ad1c9a5f023bc93f6d0543129ca0f37c1ce294dd9d386f0a21096 \
879
+ --hash=sha256:90453d2b93ea82a9f434e4e1cba043e779ff67b92f7a0e85d05d286a3625df3c \
880
+ --hash=sha256:83c06e62a390a9167da60bedd4575a14c1f58ca9dfde59830fc42e5197283dab \
881
+ --hash=sha256:abaf921531b5aeaafced90157db505e10345e45038c39e5d9b6c7922d68085cb \
882
+ --hash=sha256:06d2e1b4c491dc7d8eacea139a1b0b295f74e1a1a0f704c375028f8320d16e31 \
883
+ --hash=sha256:5a04cd7d0d3eff6ea4719371cbc44df31411862b9646db617c99718ff68d4840 \
884
+ --hash=sha256:545c83ffb518094d8c9d83cce216c0c32f8c04aaf28b92cc8283eda0685162d5 \
885
+ --hash=sha256:0d54222d7a3ba6022fdf5773931b5d7c56efe41ede7f7128c7b1637700409108 \
886
+ --hash=sha256:cff3a5295234037e39500d35316a4c5794739433528310e117b8a9a0c76d20fc \
887
+ --hash=sha256:2318bef588acc7a574f5bfdff9c172d0b1bf2c8143d9582e05f878e580a3781e \
888
+ --hash=sha256:d644a64e174c16cb4b2e41dfea6af722053e83d066da7343f333a54dae9bc31c \
889
+ --hash=sha256:da8245491d73ed0a994ed9c2e380fd058ce2fa8a18da204681f2fe1f57f98f95 \
890
+ --hash=sha256:4db5b30849606a95dcf519763dd3ab6fe9bd91df49eba517359e450a7d80ce2e \
891
+ --hash=sha256:c68db6b290cbd4049012990d7fe71a2abd9ffbe82c0056ebe0f01df8be5436b0 \
892
+ --hash=sha256:5b88e6d91ad9d59478fafe92a7c757d00c59e3bdc3331be8ada76a4f8d683f58 \
893
+ --hash=sha256:fbc5c05c85c1a02be77b1ff591087c83bc44579c6d2bd9fb798bb64ea5e1a027
894
+ semver==2.13.0; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.7"
895
+ setuptools-scm==7.0.5; python_version >= "3.8" \
896
+ --hash=sha256:7930f720905e03ccd1e1d821db521bff7ec2ac9cf0ceb6552dd73d24a45d3b02 \
897
+ --hash=sha256:031e13af771d6f892b941adb6ea04545bbf91ebc5ce68c78aaf3fff6e1fb4844
898
+ six==1.16.0; python_version >= "3.8" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.8" \
899
+ --hash=sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254 \
900
+ --hash=sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926
901
+ smmap==5.0.0; python_version >= "3.7"
902
+ stack-data==0.6.0; python_version >= "3.8" \
903
+ --hash=sha256:b92d206ef355a367d14316b786ab41cb99eb453a21f2cb216a4204625ff7bc07 \
904
+ --hash=sha256:8e515439f818efaa251036af72d89e4026e2b03993f3453c000b200fb4f2d6aa
905
+ stardist==0.8.3; python_version >= "3.6"
906
+ streamlit==1.12.0; python_version >= "3.7"
907
+ tensorboard-data-server==0.6.1; python_version >= "3.7" \
908
+ --hash=sha256:809fe9887682d35c1f7d1f54f0f40f98bb1f771b14265b453ca051e2ce58fca7 \
909
+ --hash=sha256:fa8cef9be4fcae2f2363c88176638baf2da19c5ec90addb49b1cde05c95c88ee \
910
+ --hash=sha256:d8237580755e58eff68d1f3abefb5b1e39ae5c8b127cc40920f9c4fb33f4b98a
911
+ tensorboard-plugin-wit==1.8.1; python_version >= "3.7" \
912
+ --hash=sha256:ff26bdd583d155aa951ee3b152b3d0cffae8005dc697f72b44a8e8c2a77a8cbe
913
+ tensorboard==2.10.1; python_version >= "3.7" \
914
+ --hash=sha256:fb9222c1750e2fa35ef170d998a1e229f626eeced3004494a8849c88c15d8c1c
915
+ tensorflow-estimator==2.10.0; python_version >= "3.7" \
916
+ --hash=sha256:f324ea17cd57f16e33bf188711d5077e6b2e5f5a12c328d6e01a07b23888edcd
917
+ tensorflow-io-gcs-filesystem==0.27.0; python_version >= "3.7" and python_version < "3.11" \
918
+ --hash=sha256:babca2a12755badd1517043f9d633823533fbd7b463d7d36e9e6179b246731dc \
919
+ --hash=sha256:b3a0ebfeac11507f6fc96162b8b22010b7d715bb0848311e54ef18d88f07014a \
920
+ --hash=sha256:c22c71ee80f131b2d55d53a3c66a910156004c2dcba976cabd8deeb5e236397a \
921
+ --hash=sha256:244754af85090d3fdd67c0b160bce8509e9a43fefccb295e3c9b72df21d9db61 \
922
+ --hash=sha256:3e510134375ed0467d1d90cd80b762b68e93b429fe7b9b38a953e3fe4306536f \
923
+ --hash=sha256:e21842a0a7c906525884bdbdc6d82bcfec98c6da5bafe7bfc89fd7253fcab5cf \
924
+ --hash=sha256:043008e51e920028b7c564795d82d2487b0baf6bdb23cb9d84796c4a8fcab668 \
925
+ --hash=sha256:5c809435233893c0df80dce3d10d310885c86dcfb08ca9ebb55e0fcb8a4e13ac \
926
+ --hash=sha256:4cc906a12bbd788be071e2dab333f953e82938b77f93429e55ad4b4bfd77072a \
927
+ --hash=sha256:1ad97ef862c1fb3f7ba6fe3cb5de25cb41d1c55121deaf00c590a5726a7afe88 \
928
+ --hash=sha256:564a7de156650cac9e1e361dabd6b5733a4ef31f5f11ef5eebf7fe694128334f \
929
+ --hash=sha256:9cf6a8efc35a04a8c3d5ec4c6b6e4931a6bc8d4e1f9d9aa0bad5fd272941c886 \
930
+ --hash=sha256:f7d24da555e2a1fe890b020b1953819ad990e31e63088a77ce87b7ffa67a7aaf \
931
+ --hash=sha256:ed17c281a28df9ab0547cdf166e885208d2a43db0f0f8fbe66addc4e23ee36ff \
932
+ --hash=sha256:8d2c01ba916866204b70f96103bbaa24655b1e7b416b399e49dce893a7835aa7 \
933
+ --hash=sha256:152f4c20e5341d486df35f7ce9751a441ed89b43c1036491cd2b30a742fbe20a
934
+ tensorflow==2.10.0; python_version >= "3.7" \
935
+ --hash=sha256:60d5b4fbbb7a1304d96352372fa032e861e98bb3f23aced7ce53bc475a2df97d \
936
+ --hash=sha256:25e1e898bc1df521af9a8bfe0e511124379a6414083234ec67c6ab212ad12b2f \
937
+ --hash=sha256:e129114dc529e63af9c419b5917b3407d0d26a4c8b73e114f601a175a7eb0477 \
938
+ --hash=sha256:0a3b58d90fadb5bdf81a964bea73bb89019a9d1e9ac12de75375c8f65e0d7570 \
939
+ --hash=sha256:0701da16a3d6d34763cd9ced6467cee24c02c9abf0d1a48ba59ea5a8d0421cec \
940
+ --hash=sha256:64cc999ae83ddd891083141d3e5d718e3d799501a1b56c544f2ca648a8396c3e \
941
+ --hash=sha256:d9f711c5ff04333355c83eb96ca2e1db57c9663c6fa01d68b5953a040a602a3c \
942
+ --hash=sha256:9f4677e9ab7104e73710a94ff5d2ed4b335378dcd2ac7402a68c31802a680911 \
943
+ --hash=sha256:8773858cbf37aaad444b07605d29f5b2d8f7cd1ecbf1cce2777931b96884589c \
944
+ --hash=sha256:5806d4645bce5eb415863d757b5f056364b9d1cfa2c34f711f69d46cac605eee \
945
+ --hash=sha256:e85f89bc23c62d4243fad70bac902f00a234b33da8b91e2967eeef0f4b75b1e3 \
946
+ --hash=sha256:d9b19b5120c0b393d9e2fc72561cfa3a454ef7f1ac649d8ad0dcc98817a086a4 \
947
+ --hash=sha256:4b542af76d93c43e9d24dcb69888793831e434dc781c9533ee07f928fce84a15 \
948
+ --hash=sha256:c588a1f34d9db51ea856aff07da9aa877c1d1d109336eee2c3bbb16dabd3f605 \
949
+ --hash=sha256:487918f4074685e213ba247387faab34933df76939134008441cb9d3e2c95cab \
950
+ --hash=sha256:741a74278f471dc21991a6c7dc802d454d42fd39515900c6363b8c38a898fb0f
951
+ termcolor==2.0.1; python_version >= "3.7" \
952
+ --hash=sha256:7e597f9de8e001a3208c4132938597413b9da45382b6f1d150cff8d062b7aaa3 \
953
+ --hash=sha256:6b2cf769e93364a2676e1de56a7c0cff2cf5bd07f37e9cc80b0dd6320ebfe388
954
+ tifffile==2022.10.10; python_version >= "3.8" \
955
+ --hash=sha256:87f3aee8a0d06b74655269a105de75c1958a24653e1930d523eb516100043503 \
956
+ --hash=sha256:50b61ba943b866d191295bc38a00191c9fdab23ece063544c7f1a264e3f6aa8e
957
+ toml==0.10.2; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.3.0" and python_version >= "3.7" \
958
+ --hash=sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b \
959
+ --hash=sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f
960
+ tomli==2.0.1; python_version >= "3.8" \
961
+ --hash=sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc \
962
+ --hash=sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f
963
+ toolz==0.12.0; python_version >= "3.7"
964
+ torch==1.13.0; python_full_version >= "3.7.0" \
965
+ --hash=sha256:f68edfea71ade3862039ba66bcedf954190a2db03b0c41a9b79afd72210abd97 \
966
+ --hash=sha256:d2d2753519415d154de4d3e64d2eaaeefdba6b6fd7d69d5ffaef595988117700 \
967
+ --hash=sha256:6c227c16626e4ce766cca5351cc62a2358a11e8e466410a298487b9dff159eb1 \
968
+ --hash=sha256:49a949b8136b32b2ec0724cbf4c6678b54e974b7d68f19f1231eea21cde5c23b \
969
+ --hash=sha256:0fdd38c96230947b1ed870fed4a560252f8d23c3a2bf4dab9d2d42b18f2e67c8 \
970
+ --hash=sha256:43db0723fc66ad6486f86dc4890c497937f7cd27429f28f73fb7e4d74b7482e2 \
971
+ --hash=sha256:e643ac8d086706e82f77b5d4dfcf145a9dd37b69e03e64177fc23821754d2ed7 \
972
+ --hash=sha256:bb33a911460475d1594a8c8cb73f58c08293211760796d99cae8c2509b86d7f1 \
973
+ --hash=sha256:220325d0f4e69ee9edf00c04208244ef7cf22ebce083815ce272c7491f0603f5 \
974
+ --hash=sha256:cd1e67db6575e1b173a626077a54e4911133178557aac50683db03a34e2b636a \
975
+ --hash=sha256:9197ec216833b836b67e4d68e513d31fb38d9789d7cd998a08fba5b499c38454 \
976
+ --hash=sha256:fa768432ce4b8ffa29184c79a3376ab3de4a57b302cdf3c026a6be4c5a8ab75b \
977
+ --hash=sha256:635dbb99d981a6483ca533b3dc7be18ef08dd9e1e96fb0bb0e6a99d79e85a130 \
978
+ --hash=sha256:857c7d5b1624c5fd979f66d2b074765733dba3f5e1cc97b7d6909155a2aae3ce \
979
+ --hash=sha256:ef934a21da6f6a516d0a9c712a80d09c56128abdc6af8dc151bee5199b4c3b4e \
980
+ --hash=sha256:f01a9ae0d4b69d2fc4145e8beab45b7877342dddbd4838a7d3c11ca7f6680745 \
981
+ --hash=sha256:9ac382cedaf2f70afea41380ad8e7c06acef6b5b7e2aef3971cdad666ca6e185 \
982
+ --hash=sha256:e20df14d874b024851c58e8bb3846249cb120e677f7463f60c986e3661f88680 \
983
+ --hash=sha256:4a378f5091307381abfb30eb821174e12986f39b1cf7c4522bf99155256819eb \
984
+ --hash=sha256:922a4910613b310fbeb87707f00cb76fec328eb60cc1349ed2173e7c9b6edcd8 \
985
+ --hash=sha256:47fe6228386bff6d74319a2ffe9d4ed943e6e85473d78e80502518c607d644d2
986
+ tornado==6.2; python_version >= "3.7"
987
+ tqdm==4.64.1; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.4.0" and python_version >= "3.6" \
988
+ --hash=sha256:6fee160d6ffcd1b1c68c65f14c829c22832bc401726335ce92c52d395944a6a1 \
989
+ --hash=sha256:5f4f682a004951c1b450bc753c710e9280c5746ce6ffedee253ddbcbf54cf1e4
990
+ traitlets==5.5.0; python_version >= "3.8" \
991
+ --hash=sha256:1201b2c9f76097195989cdf7f65db9897593b0dfd69e4ac96016661bb6f0d30f \
992
+ --hash=sha256:b122f9ff2f2f6c1709dab289a05555be011c87828e911c0cf4074b85cb780a79
993
+ typing-extensions==4.4.0; python_version >= "3.8" and python_full_version >= "3.7.0" \
994
+ --hash=sha256:16fa4864408f655d35ec496218b85f79b3437c829e93320c7c9215ccfd92489e \
995
+ --hash=sha256:1511434bb92bf8dd198c12b1cc812e800d4181cfcb867674e0f8279cc93087aa
996
+ tzdata==2022.5; platform_system == "Windows" and python_version >= "3.7" and (python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.7") \
997
+ --hash=sha256:323161b22b7802fdc78f20ca5f6073639c64f1a7227c40cd3e19fd1d0ce6650a \
998
+ --hash=sha256:e15b2b3005e2546108af42a0eb4ccab4d9e225e2dfbf4f77aad50c70a4b1f3ab
999
+ tzlocal==4.2; python_version >= "3.7"
1000
+ urllib3==1.26.12; python_version >= "3.7" and python_full_version < "3.0.0" and python_version < "4" or python_full_version >= "3.6.0" and python_version < "4" and python_version >= "3.7"
1001
+ validators==0.20.0; python_version >= "3.7"
1002
+ watchdog==2.1.9; platform_system != "Darwin" and python_version >= "3.7"
1003
+ wcwidth==0.2.5; python_full_version >= "3.6.2" and python_version >= "3.8" \
1004
+ --hash=sha256:beb4802a9cebb9144e99086eff703a642a13d6a0052920003a230f3294bbe784 \
1005
+ --hash=sha256:c4d647b99872929fdb7bdcaa4fbe7f01413ed3d98077df798530e5b04f116c83
1006
+ werkzeug==2.2.2; python_version >= "3.7"
1007
+ wrapt==1.14.1; python_version >= "3.7" and python_full_version < "3.0.0" or python_full_version >= "3.5.0" and python_version >= "3.7" \
1008
+ --hash=sha256:1b376b3f4896e7930f1f772ac4b064ac12598d1c38d04907e696cc4d794b43d3 \
1009
+ --hash=sha256:903500616422a40a98a5a3c4ff4ed9d0066f3b4c951fa286018ecdf0750194ef \
1010
+ --hash=sha256:5a9a0d155deafd9448baff28c08e150d9b24ff010e899311ddd63c45c2445e28 \
1011
+ --hash=sha256:ddaea91abf8b0d13443f6dac52e89051a5063c7d014710dcb4d4abb2ff811a59 \
1012
+ --hash=sha256:36f582d0c6bc99d5f39cd3ac2a9062e57f3cf606ade29a0a0d6b323462f4dd87 \
1013
+ --hash=sha256:7ef58fb89674095bfc57c4069e95d7a31cfdc0939e2a579882ac7d55aadfd2a1 \
1014
+ --hash=sha256:e2f83e18fe2f4c9e7db597e988f72712c0c3676d337d8b101f6758107c42425b \
1015
+ --hash=sha256:ee2b1b1769f6707a8a445162ea16dddf74285c3964f605877a20e38545c3c462 \
1016
+ --hash=sha256:833b58d5d0b7e5b9832869f039203389ac7cbf01765639c7309fd50ef619e0b1 \
1017
+ --hash=sha256:80bb5c256f1415f747011dc3604b59bc1f91c6e7150bd7db03b19170ee06b320 \
1018
+ --hash=sha256:07f7a7d0f388028b2df1d916e94bbb40624c59b48ecc6cbc232546706fac74c2 \
1019
+ --hash=sha256:02b41b633c6261feff8ddd8d11c711df6842aba629fdd3da10249a53211a72c4 \
1020
+ --hash=sha256:2fe803deacd09a233e4762a1adcea5db5d31e6be577a43352936179d14d90069 \
1021
+ --hash=sha256:257fd78c513e0fb5cdbe058c27a0624c9884e735bbd131935fd49e9fe719d310 \
1022
+ --hash=sha256:4fcc4649dc762cddacd193e6b55bc02edca674067f5f98166d7713b193932b7f \
1023
+ --hash=sha256:11871514607b15cfeb87c547a49bca19fde402f32e2b1c24a632506c0a756656 \
1024
+ --hash=sha256:8ad85f7f4e20964db4daadcab70b47ab05c7c1cf2a7c1e51087bfaa83831854c \
1025
+ --hash=sha256:a9a52172be0b5aae932bef82a79ec0a0ce87288c7d132946d645eba03f0ad8a8 \
1026
+ --hash=sha256:6d323e1554b3d22cfc03cd3243b5bb815a51f5249fdcbb86fda4bf62bab9e164 \
1027
+ --hash=sha256:43ca3bbbe97af00f49efb06e352eae40434ca9d915906f77def219b88e85d907 \
1028
+ --hash=sha256:6b1a564e6cb69922c7fe3a678b9f9a3c54e72b469875aa8018f18b4d1dd1adf3 \
1029
+ --hash=sha256:00b6d4ea20a906c0ca56d84f93065b398ab74b927a7a3dbd470f6fc503f95dc3 \
1030
+ --hash=sha256:a85d2b46be66a71bedde836d9e41859879cc54a2a04fad1191eb50c2066f6e9d \
1031
+ --hash=sha256:dbcda74c67263139358f4d188ae5faae95c30929281bc6866d00573783c422b7 \
1032
+ --hash=sha256:b21bb4c09ffabfa0e85e3a6b623e19b80e7acd709b9f91452b8297ace2a8ab00 \
1033
+ --hash=sha256:9e0fd32e0148dd5dea6af5fee42beb949098564cc23211a88d799e434255a1f4 \
1034
+ --hash=sha256:9736af4641846491aedb3c3f56b9bc5568d92b0692303b5a305301a95dfd38b1 \
1035
+ --hash=sha256:5b02d65b9ccf0ef6c34cba6cf5bf2aab1bb2f49c6090bafeecc9cd81ad4ea1c1 \
1036
+ --hash=sha256:21ac0156c4b089b330b7666db40feee30a5d52634cc4560e1905d6529a3897ff \
1037
+ --hash=sha256:9f3e6f9e05148ff90002b884fbc2a86bd303ae847e472f44ecc06c2cd2fcdb2d \
1038
+ --hash=sha256:6e743de5e9c3d1b7185870f480587b75b1cb604832e380d64f9504a0535912d1 \
1039
+ --hash=sha256:d79d7d5dc8a32b7093e81e97dad755127ff77bcc899e845f41bf71747af0c569 \
1040
+ --hash=sha256:81b19725065dcb43df02b37e03278c011a09e49757287dca60c5aecdd5a0b8ed \
1041
+ --hash=sha256:b014c23646a467558be7da3d6b9fa409b2c567d2110599b7cf9a0c5992b3b471 \
1042
+ --hash=sha256:88bd7b6bd70a5b6803c1abf6bca012f7ed963e58c68d76ee20b9d751c74a3248 \
1043
+ --hash=sha256:b5901a312f4d14c59918c221323068fad0540e34324925c8475263841dbdfe68 \
1044
+ --hash=sha256:d77c85fedff92cf788face9bfa3ebaa364448ebb1d765302e9af11bf449ca36d \
1045
+ --hash=sha256:8d649d616e5c6a678b26d15ece345354f7c2286acd6db868e65fcc5ff7c24a77 \
1046
+ --hash=sha256:7d2872609603cb35ca513d7404a94d6d608fc13211563571117046c9d2bcc3d7 \
1047
+ --hash=sha256:ee6acae74a2b91865910eef5e7de37dc6895ad96fa23603d1d27ea69df545015 \
1048
+ --hash=sha256:2b39d38039a1fdad98c87279b48bc5dce2c0ca0d73483b12cb72aa9609278e8a \
1049
+ --hash=sha256:60db23fa423575eeb65ea430cee741acb7c26a1365d103f7b0f6ec412b893853 \
1050
+ --hash=sha256:709fe01086a55cf79d20f741f39325018f4df051ef39fe921b1ebe780a66184c \
1051
+ --hash=sha256:8c0ce1e99116d5ab21355d8ebe53d9460366704ea38ae4d9f6933188f327b456 \
1052
+ --hash=sha256:e3fb1677c720409d5f671e39bac6c9e0e422584e5f518bfd50aa4cbbea02433f \
1053
+ --hash=sha256:642c2e7a804fcf18c222e1060df25fc210b9c58db7c91416fb055897fc27e8cc \
1054
+ --hash=sha256:7b7c050ae976e286906dd3f26009e117eb000fb2cf3533398c5ad9ccc86867b1 \
1055
+ --hash=sha256:ef3f72c9666bba2bab70d2a8b79f2c6d2c1a42a7f7e2b0ec83bb2f9e383950af \
1056
+ --hash=sha256:01c205616a89d09827986bc4e859bcabd64f5a0662a7fe95e0d359424e0e071b \
1057
+ --hash=sha256:5a0f54ce2c092aaf439813735584b9537cad479575a09892b8352fea5e988dc0 \
1058
+ --hash=sha256:2cf71233a0ed05ccdabe209c606fe0bac7379fdcf687f39b944420d2a09fdb57 \
1059
+ --hash=sha256:aa31fdcc33fef9eb2552cbcbfee7773d5a6792c137b359e82879c101e98584c5 \
1060
+ --hash=sha256:d1967f46ea8f2db647c786e78d8cc7e4313dbd1b0aca360592d8027b8508e24d \
1061
+ --hash=sha256:3232822c7d98d23895ccc443bbdf57c7412c5a65996c30442ebe6ed3df335383 \
1062
+ --hash=sha256:988635d122aaf2bdcef9e795435662bcd65b02f4f4c1ae37fbee7401c440b3a7 \
1063
+ --hash=sha256:9cca3c2cdadb362116235fdbd411735de4328c61425b0aa9f872fd76d02c4e86 \
1064
+ --hash=sha256:d52a25136894c63de15a35bc0bdc5adb4b0e173b9c0d07a2be9d3ca64a332735 \
1065
+ --hash=sha256:40e7bc81c9e2b2734ea4bc1aceb8a8f0ceaac7c5299bc5d69e37c44d9081d43b \
1066
+ --hash=sha256:b9b7a708dd92306328117d8c4b62e2194d00c365f18eff11a9b53c6f923b01e3 \
1067
+ --hash=sha256:6a9a25751acb379b466ff6be78a315e2b439d4c94c1e99cb7266d40a537995d3 \
1068
+ --hash=sha256:34aa51c45f28ba7f12accd624225e2b1e5a3a45206aa191f6f9aac931d9d56fe \
1069
+ --hash=sha256:dee0ce50c6a2dd9056c20db781e9c1cfd33e77d2d569f5d1d9321c641bb903d5 \
1070
+ --hash=sha256:dee60e1de1898bde3b238f18340eec6148986da0455d8ba7848d50470a7a32fb \
1071
+ --hash=sha256:380a85cf89e0e69b7cfbe2ea9f765f004ff419f34194018a6827ac0e3edfed4d
1072
+ zipp==3.10.0; python_version >= "3.7" \
1073
+ --hash=sha256:4fcb6f278987a6605757302a6e40e896257570d11c51628968ccb2a47e80c6c1 \
1074
+ --hash=sha256:7a7262fd930bd3e36c50b9a64897aec3fafff3dfdeec9623ae22b40e93f99bb8