coralLight's picture
add lora support
9ed63c2
import gradio as gr
import numpy as np
import random
import json
import spaces #[uncomment to use ZeroGPU]
from diffusers import (
AutoencoderKL,
StableDiffusionXLPipeline,
DPMSolverMultistepScheduler
)
from huggingface_hub import login, hf_hub_download
from PIL import Image
# from huggingface_hub import login
from SVDNoiseUnet import NPNet64
import functools
import random
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d
import torch
import torch.nn as nn
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import contextmanager, nullcontext
import accelerate
import torchsde
from SVDNoiseUnet import NPNet128
from tqdm import tqdm, trange
from itertools import islice
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "Lykon/dreamshaper-xl-1-0" # Replace to the model you would like to use
from sampler import UniPCSampler
from customed_unipc_scheduler import CustomedUniPCMultistepScheduler
precision_scope = autocast
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])
def prepare_sdxl_pipeline_step_parameter( pipe: StableDiffusionXLPipeline
, prompts
, need_cfg
, device
, negative_prompt = None
, W = 1024
, H = 1024): # need to correct the format
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt=prompts,
negative_prompt=negative_prompt,
device=device,
do_classifier_free_guidance=need_cfg,
)
# timesteps = pipe.scheduler.timesteps
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = pooled_prompt_embeds.to(device)
original_size = (W, H)
crops_coords_top_left = (0, 0)
target_size = (W, H)
text_encoder_projection_dim = None
add_time_ids = list(original_size + crops_coords_top_left + target_size)
if pipe.text_encoder_2 is None:
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
else:
text_encoder_projection_dim = pipe.text_encoder_2.config.projection_dim
passed_add_embed_dim = (
pipe.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
)
expected_add_embed_dim = pipe.unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype)
add_time_ids = add_time_ids.to(device)
negative_add_time_ids = add_time_ids
if need_cfg:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
ret_dict = {
"text_embeds": add_text_embeds,
"time_ids": add_time_ids
}
return prompt_embeds, ret_dict
# New helper to load a list-of-dicts preference JSON
# JSON schema: [ { 'human_preference': [int], 'prompt': str, 'file_path': [str] }, ... ]
def load_preference_json(json_path: str) -> list[dict]:
"""Load records from a JSON file formatted as a list of preference dicts."""
with open(json_path, 'r') as f:
data = json.load(f)
return data
# New helper to extract just the prompts from the preference JSON
# Returns a flat list of all 'prompt' values
def extract_prompts_from_pref_json(json_path: str) -> list[str]:
"""Load a JSON of preference records and return only the prompts."""
records = load_preference_json(json_path)
return [rec['prompt'] for rec in records]
# Example usage:
# prompts = extract_prompts_from_pref_json("path/to/preference.json")
# print(prompts)
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu',need_append_zero = True):
"""Constructs the noise schedule of Karras et al. (2022)."""
ramp = torch.linspace(0, 1, n)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return append_zero(sigmas).to(device) if need_append_zero else sigmas.to(device)
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
return x[(...,) + (None,) * dims_to_append]
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def convert_caption_json_to_str(json):
caption = json["caption"]
return caption
torch_dtype = torch.float16
repo_id = "madebyollin/sdxl-vae-fp16-fix" # e.g., "distilbert/distilgpt2"
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix",torch_dtype=torch_dtype) #from_single_file(downloaded_path, torch_dtype=torch_dtype)
vae.to('cuda')
pipe = StableDiffusionXLPipeline.from_pretrained("John6666/nova-anime-xl-il-v120-sdxl",torch_dtype=torch_dtype,vae=vae)
pipe.load_lora_weights('DervlexVenice/spo_sdxl_4k_p_10ep_lora_webui-base-model-sdxl'
, weight_name='SPO_SDXL_4k_p_10ep_LoRA_webui_510261.safetensors'
, adapter_name="spo")
pipe.load_lora_weights('DervlexVenice/aesthetic_quality_modifiers_masterpiece-style-illustrious'
, weight_name='Aesthetic_Quality_Modifiers_Masterpiece_929497.safetensors'
, adapter_name="aqm")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
accelerator = accelerate.Accelerator()
def generate_image_with_steps(prompt
, negative_prompt
, seed
, width
, height
, guidance_scale
, num_inference_steps
, need_lora: bool = False):
"""Helper function to generate image with specific number of steps"""
scheduler = CustomedUniPCMultistepScheduler.from_config(pipe.scheduler.config
, solver_order = 2 if num_inference_steps==8 else 1
,denoise_to_zero = False
, use_afs=True)
if not need_lora:
pipe.set_adapters(["spo", "aqm"], adapter_weights=[0.0, 0.0])
elif num_inference_steps > 6 and num_inference_steps < 8:
pipe.set_adapters(["spo", "aqm"], adapter_weights=[0.7, 0.7])
else:
pipe.set_adapters(["spo", "aqm"], adapter_weights=[0.25, 0.25])
pipe.scheduler = scheduler
pipe.to('cuda')
with torch.no_grad():
with precision_scope("cuda"):
prompts = [prompt]
latents = torch.randn(
(1, pipe.unet.config.in_channels, height // 8, width // 8),
device=device,
)
latents = latents * pipe.scheduler.init_noise_sigma
pipe.scheduler.set_timesteps(num_inference_steps)
idx = 0
register_free_upblock2d(pipe, b1=1.0, b2=1.0, s1=1.0, s2=1.0)
register_free_crossattn_upblock2d(pipe, b1=1.0, b2=1.0, s1=1.0, s2=1.0)
for t in tqdm(pipe.scheduler.timesteps):
# Still not enough. I will tell you, what is the best implementation. Although not via the following code.
# if idx == len(pipe.scheduler.timesteps) - 1:
# break
if idx == -1:#(6 if num_inference_steps == 8 else 4):
register_free_upblock2d(pipe, b1=1.2, b2=1.2, s1=0.9, s2=0.9)
register_free_crossattn_upblock2d(pipe, b1=1.2, b2=1.2, s1=0.9, s2=0.9)
latent_model_input = torch.cat([latents] * 2)
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input , timestep=t)
negative_prompts = '(worst quality:2), (low quality:2), (normal quality:2), bad anatomy, bad proportions, poorly drawn face, poorly drawn hands, missing fingers, extra limbs, blurry, pixelated, distorted, lowres, jpeg artifacts, watermark, signature, text, (deformed:1.5), (bad hands:1.3), overexposed, underexposed, censored, mutated, extra fingers, cloned face, bad eyes'
negative_prompts = 1 * [negative_prompts]
use_afs = num_inference_steps < 7
use_free_predictor = False
prompt_embeds, cond_kwargs = prepare_sdxl_pipeline_step_parameter(pipe
, prompts
, need_cfg=True
, device=pipe.device
, negative_prompt=negative_prompts
, W=width
, H=height)
if idx == 0 and use_afs:
noise_pred = latent_model_input * 0.975
elif idx == len(pipe.scheduler.timesteps) - 1 and use_free_predictor:
noise_pred = None
else:
noise_pred = pipe.unet(latent_model_input
, t
, encoder_hidden_states=prompt_embeds.to(device=latents.device, dtype=latents.dtype)
, added_cond_kwargs=cond_kwargs).sample
if noise_pred is not None:
uncond, cond = noise_pred.chunk(2)
noise_pred = uncond + (cond - uncond) * guidance_scale
latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample
idx += 1
x_samples_ddim = pipe.vae.decode(latents / pipe.vae.config.scaling_factor).sample
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
if True:
for x_sample in x_samples_ddim:
# x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
img = Image.fromarray(x_sample.astype(np.uint8))
return img
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
resolution,
guidance_scale,
num_inference_steps,
need_lora,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Parse resolution string into width and height
width, height = map(int, resolution.split('x'))
# Generate image with selected steps
image_quick = generate_image_with_steps(prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps, need_lora=need_lora)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, final_sigmas_type="sigma_min")
# Generate image with 50 steps for high quality
negative_prompts = '(worst quality:2), (low quality:2), (normal quality:2), bad anatomy, bad proportions, poorly drawn face, poorly drawn hands, missing fingers, extra limbs, blurry, pixelated, distorted, lowres, jpeg artifacts, watermark, signature, text, (deformed:1.5), (bad hands:1.3), overexposed, underexposed, censored, mutated, extra fingers, cloned face, bad eyes'
negative_prompts = 1 * [negative_prompts]
image_50_steps = pipe(prompt=[prompt]
,negative_prompt=negative_prompts
,num_inference_steps=20
,guidance_scale=guidance_scale
,height=height
,width=width).images[0]
return image_quick, image_50_steps, seed
examples = [
"masterpiece, best quality, amazing quality, 4k, very aesthetic, high resolution, ultra-detailed, absurdres, newest, scenery, colorful, 1girl, solo, cute, pink hair, long hair, choppy bangs, long sidelocks, nebulae cosmic purple eyes, rimlit eyes, facing to the side, looking at viewer, downturned eyes, light smile, red annular solar eclipse halo, red choker, detailed purple serafuku, big red neckerchief, (glowing stars in hand:1.2), fingers, dispersion_\(optics\), arched back, from side, from below, dutch angle, portrait, upper body, head tilt, colorful, rim light, backlit, (colorful light particles:1.2), cosmic sky, aurora, chaos, perfect night, fantasy background, dreamlike atmosphere, BREAK, detailed background, blurry foreground, bokeh, depth of field, volumetric lighting",
"masterpiece, best quality, amazing quality, 4k, very aesthetic, high resolution, ultra-detailed, absurdres, newest, scenery, 1girl, blonde hair, long hair, floating hair, blue eyes, looking at viewer, parted lips, medium breasts, puffy sleeve white dress, leaning side against tree, dutch angle, upper body, (portrait, close-up:1.2), foreshortening, vines, green, forest, flowers, white butterfly, BREAK, dramatic shadow, depth of field, vignetting, dappled sunlight, lens flare, backlighting, volumetric lighting",
"masterpiece, best quality, amazing quality, 4k, very aesthetic, high resolution, ultra-detailed, absurdres, newest, scenery, 1girl, solo, long cat ears, white pillbox hat, brown hair, short hair, bob cut, hair flaps, long flipped sidelocks, floating hair, purple eyes, tsurime, turning head, looking at viewer, head tilt, smirk, smug, closed mouth, v-shaped eyebrows, doyagao, chef, patissier, wide long sleeve white double-breasted long dress, circle skirt, white apron, long cat tail, holding plate with cake on with hand, v, arched back, leaning forward, twisted torso, dutch angle, close-up, portrait, upper body, face focus, window, dappled sunlight, day, indoor, BREAK, depth of field, vignetting, volumetric lighting",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks() as demo:
gr.HTML(f"<style>{css}</style>")
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Hyperparameters are all you need")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("### Our fast inference Result using afs and uni-predictor to get 2 free steps")
result = gr.Image(label="Quick Result", show_label=False)
with gr.Column():
gr.Markdown("### Original 20 steps Result")
result_20_steps = gr.Image(label="20 Steps Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
resolution = gr.Dropdown(
choices=[
"1024x1024",
"1216x832",
"832x1216"
],
value="1024x1024",
label="Resolution",
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=6.0,
step=0.1,
value=5.5, # Replace with defaults that work for your model
)
num_inference_steps = gr.Dropdown(
choices=[5, 6, 7, 8],
value=8,
label="Number of inference steps",
)
need_lora = gr.Checkbox(
label="Use LoRA adapters",
value=False,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
resolution,
guidance_scale,
num_inference_steps,
need_lora,
],
outputs=[result, result_20_steps, seed],
)
if __name__ == "__main__":
demo.launch()