|
|
"""SAMPLING ONLY.""" |
|
|
|
|
|
import torch |
|
|
|
|
|
from dpm_solver_v3 import NoiseScheduleVP, model_wrapper, DPM_Solver_v3 |
|
|
from uni_pc import UniPC |
|
|
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d |
|
|
|
|
|
|
|
|
class DPMSolverv3Sampler: |
|
|
def __init__(self, stats_dir, pipe, steps, guidance_scale, **kwargs): |
|
|
super().__init__() |
|
|
self.model = pipe |
|
|
to_torch = lambda x: x.clone().detach().to(torch.float32).to(pipe.device) |
|
|
DTYPE = torch.float32 |
|
|
device = "cuda" |
|
|
noise_scheduler = pipe.scheduler |
|
|
alpha_schedule = noise_scheduler.alphas_cumprod.to(device=device, dtype=DTYPE) |
|
|
self.alphas_cumprod = alpha_schedule |
|
|
self.device = device |
|
|
self.guidance_scale = guidance_scale |
|
|
|
|
|
self.ns = NoiseScheduleVP("discrete", alphas_cumprod=self.alphas_cumprod) |
|
|
|
|
|
assert stats_dir is not None, f"No statistics file found in {stats_dir}." |
|
|
print("Use statistics", stats_dir) |
|
|
self.dpm_solver_v3 = DPM_Solver_v3( |
|
|
statistics_dir=stats_dir, |
|
|
noise_schedule=self.ns, |
|
|
steps=steps, |
|
|
t_start=None, |
|
|
t_end=None, |
|
|
skip_type="customed_time_karras", |
|
|
degenerated=False, |
|
|
device=self.device, |
|
|
) |
|
|
self.steps = steps |
|
|
|
|
|
@torch.no_grad() |
|
|
def apply_free_unet(self): |
|
|
register_free_upblock2d(self.model, b1=1.1, b2=1.1, s1=0.9, s2=0.2) |
|
|
register_free_crossattn_upblock2d(self.model, b1=1.1, b2=1.1, s1=0.9, s2=0.2) |
|
|
|
|
|
@torch.no_grad() |
|
|
def stop_free_unet(self): |
|
|
register_free_upblock2d(self.model, b1=1.0, b2=1.0, s1=1.0, s2=1.0) |
|
|
register_free_crossattn_upblock2d(self.model, b1=1.0, b2=1.0, s1=1.0, s2=1.0) |
|
|
|
|
|
@torch.no_grad() |
|
|
def sample( |
|
|
self, |
|
|
batch_size, |
|
|
shape, |
|
|
conditioning=None, |
|
|
x_T=None, |
|
|
unconditional_conditioning=None, |
|
|
use_corrector=False, |
|
|
half=False, |
|
|
start_free_u_step=None, |
|
|
|
|
|
**kwargs, |
|
|
): |
|
|
if conditioning is not None: |
|
|
cond_in = torch.cat([unconditional_conditioning, conditioning]) |
|
|
|
|
|
if isinstance(conditioning, dict): |
|
|
cbs = conditioning[list(conditioning.keys())[0]].shape[0] |
|
|
if cbs != batch_size: |
|
|
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") |
|
|
else: |
|
|
if conditioning.shape[0] != batch_size: |
|
|
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") |
|
|
|
|
|
|
|
|
C, H, W = shape |
|
|
size = (batch_size, C, H, W) |
|
|
|
|
|
if x_T is None: |
|
|
img = torch.randn(size, device=self.device) |
|
|
else: |
|
|
img = x_T |
|
|
|
|
|
if conditioning is None: |
|
|
model_fn = model_wrapper( |
|
|
lambda x, t, c: self.model.unet(x, t, encoder_hidden_states=c).sample, |
|
|
self.ns, |
|
|
model_type="noise", |
|
|
guidance_type="uncond", |
|
|
) |
|
|
ORDER = 3 |
|
|
else: |
|
|
model_fn = model_wrapper( |
|
|
lambda x, t, c: self.model.unet(x, t, encoder_hidden_states=c).sample, |
|
|
self.ns, |
|
|
model_type="noise", |
|
|
guidance_type="classifier-free", |
|
|
condition=conditioning, |
|
|
unconditional_condition=unconditional_conditioning, |
|
|
guidance_scale=self.guidance_scale, |
|
|
) |
|
|
if self.steps == 8: |
|
|
ORDER = 2 |
|
|
else: |
|
|
ORDER = 1 |
|
|
|
|
|
x = self.dpm_solver_v3.sample( |
|
|
img, |
|
|
model_fn, |
|
|
order=ORDER, |
|
|
p_pseudo=False, |
|
|
c_pseudo=True, |
|
|
lower_order_final=True, |
|
|
use_corrector=use_corrector, |
|
|
start_free_u_step=start_free_u_step, |
|
|
free_u_apply_callback=self.apply_free_unet if start_free_u_step is not None else None, |
|
|
free_u_stop_callback=self.stop_free_unet if start_free_u_step is not None else None, |
|
|
half=half, |
|
|
) |
|
|
|
|
|
return x.to(self.device), None |
|
|
|
|
|
|
|
|
class UniPCSampler: |
|
|
def __init__(self |
|
|
, pipe |
|
|
, model_closure |
|
|
, steps |
|
|
, guidance_scale,denoise_to_zero=False |
|
|
, need_fp16_discrete_method = False |
|
|
, ultilize_vae_in_fp16 = False |
|
|
, is_high_resoulution = True |
|
|
, skip_type="customed_time_karras" |
|
|
, force_not_use_afs=False |
|
|
, **kwargs): |
|
|
super().__init__() |
|
|
|
|
|
self.model = model_closure(pipe) |
|
|
self.pipe = pipe |
|
|
self.need_fp16_discrete_method = need_fp16_discrete_method |
|
|
|
|
|
DTYPE = self.pipe.unet.dtype |
|
|
device = self.pipe.device |
|
|
noise_scheduler = pipe.scheduler |
|
|
alpha_schedule = noise_scheduler.alphas_cumprod.to(device=device, dtype=DTYPE) |
|
|
self.alphas_cumprod = alpha_schedule |
|
|
self.device = device |
|
|
self.guidance_scale = guidance_scale |
|
|
self.use_afs = steps <= 8 and is_high_resoulution and not force_not_use_afs |
|
|
|
|
|
self.ns = NoiseScheduleVP("discrete", alphas_cumprod=self.alphas_cumprod) |
|
|
|
|
|
self.unipc_solver = UniPC( |
|
|
noise_schedule=self.ns, |
|
|
steps=steps, |
|
|
t_start=None, |
|
|
t_end=None, |
|
|
skip_type=skip_type, |
|
|
degenerated=False, |
|
|
use_afs=self.use_afs, |
|
|
device=self.device, |
|
|
denoise_to_zero=denoise_to_zero, |
|
|
need_fp16_discrete_method = self.need_fp16_discrete_method, |
|
|
ultilize_vae_in_fp16 = ultilize_vae_in_fp16, |
|
|
is_high_resoulution=is_high_resoulution, |
|
|
) |
|
|
self.steps = steps |
|
|
|
|
|
@torch.no_grad() |
|
|
def apply_free_unet(self): |
|
|
register_free_upblock2d(self.pipe, b1=1.2, b2=1.2, s1=0.9, s2=0.2) |
|
|
register_free_crossattn_upblock2d(self.pipe, b1=1.2, b2=1.2, s1=0.9, s2=0.2) |
|
|
|
|
|
@torch.no_grad() |
|
|
def stop_free_unet(self): |
|
|
register_free_upblock2d(self.pipe, b1=1.0, b2=1.0, s1=1.0, s2=1.0) |
|
|
register_free_crossattn_upblock2d(self.pipe, b1=1.0, b2=1.0, s1=1.0, s2=1.0) |
|
|
|
|
|
@torch.no_grad() |
|
|
def sample( |
|
|
self, |
|
|
batch_size, |
|
|
shape, |
|
|
conditioning=None, |
|
|
x_T=None, |
|
|
unconditional_conditioning=None, |
|
|
use_corrector=False, |
|
|
half=False, |
|
|
start_free_u_step=None, |
|
|
xl_preprocess_closure=None, |
|
|
npnet=None, |
|
|
|
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
|
|
|
C, H, W = shape |
|
|
size = (batch_size, C, H, W) |
|
|
new_img = None |
|
|
if xl_preprocess_closure is not None: |
|
|
prompt_embeds, cond_kwargs = xl_preprocess_closure(pipe=self.pipe,prompts = conditioning, need_cfg=True, device=self.device,negative_prompts=unconditional_conditioning) |
|
|
if x_T is None: |
|
|
img = torch.randn(size, device=self.device) |
|
|
else: |
|
|
img = x_T |
|
|
if xl_preprocess_closure is not None and npnet is not None: |
|
|
c, _ = prompt_embeds |
|
|
c = c.unsqueeze(0) |
|
|
new_img = npnet(img, c) |
|
|
|
|
|
if conditioning is None: |
|
|
model_fn = model_wrapper( |
|
|
lambda x, t, c: self.model(x, t, c), |
|
|
self.ns, |
|
|
model_type="noise", |
|
|
guidance_type="uncond", |
|
|
) |
|
|
ORDER = 3 |
|
|
else: |
|
|
model_fn = model_wrapper( |
|
|
lambda x, t, c: self.model(x, t, c), |
|
|
self.ns, |
|
|
model_type="noise", |
|
|
guidance_type="classifier-free", |
|
|
condition=conditioning if xl_preprocess_closure is None else prompt_embeds, |
|
|
unconditional_condition=unconditional_conditioning if xl_preprocess_closure is None else cond_kwargs, |
|
|
guidance_scale=self.guidance_scale, |
|
|
) |
|
|
if self.steps >= 7: |
|
|
ORDER = 2 |
|
|
else: |
|
|
ORDER = 1 |
|
|
|
|
|
x, full_cache = self.unipc_solver.sample( |
|
|
x=img, |
|
|
model_fn=model_fn, |
|
|
order=ORDER, |
|
|
use_corrector=use_corrector, |
|
|
lower_order_final=True, |
|
|
start_free_u_step=start_free_u_step, |
|
|
free_u_apply_callback=self.apply_free_unet if start_free_u_step is not None else None, |
|
|
free_u_stop_callback=self.stop_free_unet if start_free_u_step is not None else None, |
|
|
npnet_x=new_img if new_img is not None else None, |
|
|
npnet_scale=self.guidance_scale if new_img is not None else None, |
|
|
half=half, |
|
|
) |
|
|
|
|
|
return x.to(self.device), full_cache |
|
|
|
|
|
@torch.no_grad() |
|
|
def sample_mix( |
|
|
self, |
|
|
batch_size, |
|
|
shape, |
|
|
conditioning=None, |
|
|
x_T=None, |
|
|
unconditional_conditioning=None, |
|
|
use_corrector=False, |
|
|
half=False, |
|
|
start_free_u_step=None, |
|
|
xl_preprocess_closure=None, |
|
|
npnet=None, |
|
|
|
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
|
|
|
C, H, W = shape |
|
|
size = (batch_size, C, H, W) |
|
|
if xl_preprocess_closure is not None: |
|
|
prompt_embeds, cond_kwargs = xl_preprocess_closure(pipe=self.pipe,prompts = conditioning, need_cfg=True, device=self.device,negative_prompts=unconditional_conditioning) |
|
|
if x_T is None: |
|
|
img = torch.randn(size, device=self.device) |
|
|
else: |
|
|
img = x_T |
|
|
if xl_preprocess_closure is not None and npnet is not None: |
|
|
c, _ = prompt_embeds |
|
|
c = c.unsqueeze(0) |
|
|
img = npnet(img, c) |
|
|
|
|
|
if conditioning is None: |
|
|
model_fn = model_wrapper( |
|
|
lambda x, t, c: self.model(x, t, c), |
|
|
self.ns, |
|
|
model_type="noise", |
|
|
guidance_type="uncond", |
|
|
) |
|
|
ORDER = 3 |
|
|
else: |
|
|
model_fn = model_wrapper( |
|
|
lambda x, t, c: self.model(x, t, c), |
|
|
self.ns, |
|
|
model_type="noise", |
|
|
guidance_type="classifier-free", |
|
|
condition=conditioning if xl_preprocess_closure is None else prompt_embeds, |
|
|
unconditional_condition=unconditional_conditioning if xl_preprocess_closure is None else cond_kwargs, |
|
|
guidance_scale=self.guidance_scale, |
|
|
) |
|
|
if self.steps >= 8 and not self.need_fp16_discrete_method: |
|
|
ORDER = 2 |
|
|
else: |
|
|
ORDER = 1 |
|
|
|
|
|
x, full_cache = self.unipc_solver.sample_mix( |
|
|
x=img, |
|
|
model_fn=model_fn, |
|
|
order=ORDER, |
|
|
use_corrector=use_corrector, |
|
|
lower_order_final=True, |
|
|
start_free_u_step=start_free_u_step, |
|
|
free_u_apply_callback=self.apply_free_unet if start_free_u_step is not None else None, |
|
|
free_u_stop_callback=self.stop_free_unet if start_free_u_step is not None else None, |
|
|
half=half, |
|
|
) |
|
|
|
|
|
return x.to(self.device), full_cache |