|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
import math |
|
|
import numpy as np |
|
|
import os |
|
|
|
|
|
|
|
|
class NoiseScheduleVP: |
|
|
def __init__( |
|
|
self, |
|
|
schedule="discrete", |
|
|
betas=None, |
|
|
alphas_cumprod=None, |
|
|
continuous_beta_0=0.1, |
|
|
continuous_beta_1=20.0, |
|
|
): |
|
|
"""Create a wrapper class for the forward SDE (VP type). |
|
|
|
|
|
*** |
|
|
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t. |
|
|
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images. |
|
|
*** |
|
|
|
|
|
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). |
|
|
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). |
|
|
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: |
|
|
|
|
|
log_alpha_t = self.marginal_log_mean_coeff(t) |
|
|
sigma_t = self.marginal_std(t) |
|
|
lambda_t = self.marginal_lambda(t) |
|
|
|
|
|
Moreover, as lambda(t) is an invertible function, we also support its inverse function: |
|
|
|
|
|
t = self.inverse_lambda(lambda_t) |
|
|
|
|
|
=============================================================== |
|
|
|
|
|
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]). |
|
|
|
|
|
1. For discrete-time DPMs: |
|
|
|
|
|
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by: |
|
|
t_i = (i + 1) / N |
|
|
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1. |
|
|
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3. |
|
|
|
|
|
Args: |
|
|
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details) |
|
|
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details) |
|
|
|
|
|
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`. |
|
|
|
|
|
**Important**: Please pay special attention for the args for `alphas_cumprod`: |
|
|
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that |
|
|
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ). |
|
|
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have |
|
|
alpha_{t_n} = \sqrt{\hat{alpha_n}}, |
|
|
and |
|
|
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}). |
|
|
|
|
|
|
|
|
2. For continuous-time DPMs: |
|
|
|
|
|
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise |
|
|
schedule are the default settings in DDPM and improved-DDPM: |
|
|
|
|
|
Args: |
|
|
beta_min: A `float` number. The smallest beta for the linear schedule. |
|
|
beta_max: A `float` number. The largest beta for the linear schedule. |
|
|
cosine_s: A `float` number. The hyperparameter in the cosine schedule. |
|
|
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. |
|
|
T: A `float` number. The ending time of the forward process. |
|
|
|
|
|
=============================================================== |
|
|
|
|
|
Args: |
|
|
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs, |
|
|
'linear' or 'cosine' for continuous-time DPMs. |
|
|
Returns: |
|
|
A wrapper object of the forward SDE (VP type). |
|
|
|
|
|
=============================================================== |
|
|
|
|
|
Example: |
|
|
|
|
|
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1): |
|
|
>>> ns = NoiseScheduleVP('discrete', betas=betas) |
|
|
|
|
|
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1): |
|
|
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod) |
|
|
|
|
|
# For continuous-time DPMs (VPSDE), linear schedule: |
|
|
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.) |
|
|
|
|
|
""" |
|
|
|
|
|
if schedule not in ["discrete", "linear", "cosine"]: |
|
|
raise ValueError( |
|
|
"Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format( |
|
|
schedule |
|
|
) |
|
|
) |
|
|
self.alphas_cumprod = alphas_cumprod |
|
|
self.sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 |
|
|
self.log_sigmas = self.sigmas.log() |
|
|
self.schedule = schedule |
|
|
if schedule == "discrete": |
|
|
if betas is not None: |
|
|
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) |
|
|
else: |
|
|
assert alphas_cumprod is not None |
|
|
log_alphas = 0.5 * torch.log(alphas_cumprod) |
|
|
self.total_N = len(log_alphas) |
|
|
self.T = 1.0 |
|
|
self.t_array = torch.linspace(0.0, 1.0, self.total_N + 1)[1:].reshape((1, -1)) |
|
|
self.log_alpha_array = log_alphas.reshape( |
|
|
( |
|
|
1, |
|
|
-1, |
|
|
) |
|
|
) |
|
|
else: |
|
|
self.total_N = 1000 |
|
|
self.beta_0 = continuous_beta_0 |
|
|
self.beta_1 = continuous_beta_1 |
|
|
self.cosine_s = 0.008 |
|
|
self.cosine_beta_max = 999.0 |
|
|
self.cosine_t_max = ( |
|
|
math.atan(self.cosine_beta_max * (1.0 + self.cosine_s) / math.pi) |
|
|
* 2.0 |
|
|
* (1.0 + self.cosine_s) |
|
|
/ math.pi |
|
|
- self.cosine_s |
|
|
) |
|
|
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1.0 + self.cosine_s) * math.pi / 2.0)) |
|
|
self.schedule = schedule |
|
|
if schedule == "cosine": |
|
|
|
|
|
|
|
|
self.T = 0.9946 |
|
|
else: |
|
|
self.T = 1.0 |
|
|
|
|
|
def marginal_log_mean_coeff(self, t): |
|
|
""" |
|
|
Compute log(alpha_t) of a given continuous-time label t in [0, T]. |
|
|
""" |
|
|
if self.schedule == "discrete": |
|
|
return interpolate_fn( |
|
|
t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device) |
|
|
).reshape((-1)) |
|
|
elif self.schedule == "linear": |
|
|
return -0.25 * t**2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 |
|
|
elif self.schedule == "cosine": |
|
|
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1.0 + self.cosine_s) * math.pi / 2.0)) |
|
|
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 |
|
|
return log_alpha_t |
|
|
|
|
|
def sigma_to_t(self, sigma, quantize=None): |
|
|
quantize = None |
|
|
log_sigma = sigma.log() |
|
|
dists = log_sigma - self.log_sigmas[:, None] |
|
|
if quantize: |
|
|
return dists.abs().argmin(dim=0).view(sigma.shape) |
|
|
low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) |
|
|
high_idx = low_idx + 1 |
|
|
low, high = self.log_sigmas[low_idx], self.log_sigmas[high_idx] |
|
|
w = (low - log_sigma) / (low - high) |
|
|
w = w.clamp(0, 1) |
|
|
t = (1 - w) * low_idx + w * high_idx |
|
|
return t.view(sigma.shape) |
|
|
|
|
|
def get_special_sigmas_with_timesteps(self,timesteps): |
|
|
low_idx, high_idx, w = np.minimum(np.floor(timesteps),999), np.minimum(np.ceil(timesteps),999), torch.from_numpy( timesteps - np.floor(timesteps)) |
|
|
self.alphas_cumprod = self.alphas_cumprod.to('cpu') |
|
|
alphas = (1 - w) * self.alphas_cumprod[low_idx] + w * self.alphas_cumprod[high_idx] |
|
|
return ((1 - alphas) / alphas) ** 0.5 |
|
|
|
|
|
def marginal_alpha(self, t): |
|
|
""" |
|
|
Compute alpha_t of a given continuous-time label t in [0, T]. |
|
|
""" |
|
|
return torch.exp(self.marginal_log_mean_coeff(t)) |
|
|
|
|
|
def marginal_std(self, t): |
|
|
""" |
|
|
Compute sigma_t of a given continuous-time label t in [0, T]. |
|
|
""" |
|
|
return torch.sqrt(1.0 - torch.exp(2.0 * self.marginal_log_mean_coeff(t))) |
|
|
|
|
|
def marginal_lambda(self, t): |
|
|
""" |
|
|
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. |
|
|
""" |
|
|
log_mean_coeff = self.marginal_log_mean_coeff(t) |
|
|
log_std = 0.5 * torch.log(1.0 - torch.exp(2.0 * log_mean_coeff)) |
|
|
return log_mean_coeff - log_std |
|
|
|
|
|
def inverse_lambda(self, lamb): |
|
|
""" |
|
|
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. |
|
|
""" |
|
|
if self.schedule == "linear": |
|
|
tmp = 2.0 * (self.beta_1 - self.beta_0) * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb)) |
|
|
Delta = self.beta_0**2 + tmp |
|
|
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) |
|
|
elif self.schedule == "discrete": |
|
|
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2.0 * lamb) |
|
|
t = interpolate_fn( |
|
|
log_alpha.reshape((-1, 1)), |
|
|
torch.flip(self.log_alpha_array.to(lamb.device), [1]), |
|
|
torch.flip(self.t_array.to(lamb.device), [1]), |
|
|
) |
|
|
return t.reshape((-1,)) |
|
|
else: |
|
|
log_alpha = -0.5 * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb)) |
|
|
t_fn = ( |
|
|
lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) |
|
|
* 2.0 |
|
|
* (1.0 + self.cosine_s) |
|
|
/ math.pi |
|
|
- self.cosine_s |
|
|
) |
|
|
t = t_fn(log_alpha) |
|
|
return t |
|
|
|
|
|
|
|
|
def model_wrapper( |
|
|
model, |
|
|
noise_schedule, |
|
|
model_type="noise", |
|
|
model_kwargs={}, |
|
|
guidance_type="uncond", |
|
|
condition=None, |
|
|
unconditional_condition=None, |
|
|
guidance_scale=1.0, |
|
|
classifier_fn=None, |
|
|
classifier_kwargs={}, |
|
|
): |
|
|
"""Create a wrapper function for the noise prediction model. |
|
|
|
|
|
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to |
|
|
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input. |
|
|
|
|
|
We support four types of the diffusion model by setting `model_type`: |
|
|
|
|
|
1. "noise": noise prediction model. (Trained by predicting noise). |
|
|
|
|
|
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0). |
|
|
|
|
|
3. "v": velocity prediction model. (Trained by predicting the velocity). |
|
|
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2]. |
|
|
|
|
|
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." |
|
|
arXiv preprint arXiv:2202.00512 (2022). |
|
|
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models." |
|
|
arXiv preprint arXiv:2210.02303 (2022). |
|
|
|
|
|
4. "score": marginal score function. (Trained by denoising score matching). |
|
|
Note that the score function and the noise prediction model follows a simple relationship: |
|
|
``` |
|
|
noise(x_t, t) = -sigma_t * score(x_t, t) |
|
|
``` |
|
|
|
|
|
We support three types of guided sampling by DPMs by setting `guidance_type`: |
|
|
1. "uncond": unconditional sampling by DPMs. |
|
|
The input `model` has the following format: |
|
|
`` |
|
|
model(x, t_input, **model_kwargs) -> noise | x_start | v | score |
|
|
`` |
|
|
|
|
|
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier. |
|
|
The input `model` has the following format: |
|
|
`` |
|
|
model(x, t_input, **model_kwargs) -> noise | x_start | v | score |
|
|
`` |
|
|
|
|
|
The input `classifier_fn` has the following format: |
|
|
`` |
|
|
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond) |
|
|
`` |
|
|
|
|
|
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," |
|
|
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. |
|
|
|
|
|
3. "classifier-free": classifier-free guidance sampling by conditional DPMs. |
|
|
The input `model` has the following format: |
|
|
`` |
|
|
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score |
|
|
`` |
|
|
And if cond == `unconditional_condition`, the model output is the unconditional DPM output. |
|
|
|
|
|
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." |
|
|
arXiv preprint arXiv:2207.12598 (2022). |
|
|
|
|
|
|
|
|
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999) |
|
|
or continuous-time labels (i.e. epsilon to T). |
|
|
|
|
|
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise: |
|
|
`` |
|
|
def model_fn(x, t_continuous) -> noise: |
|
|
t_input = get_model_input_time(t_continuous) |
|
|
return noise_pred(model, x, t_input, **model_kwargs) |
|
|
`` |
|
|
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver. |
|
|
|
|
|
=============================================================== |
|
|
|
|
|
Args: |
|
|
model: A diffusion model with the corresponding format described above. |
|
|
noise_schedule: A noise schedule object, such as NoiseScheduleVP. |
|
|
model_type: A `str`. The parameterization type of the diffusion model. |
|
|
"noise" or "x_start" or "v" or "score". |
|
|
model_kwargs: A `dict`. A dict for the other inputs of the model function. |
|
|
guidance_type: A `str`. The type of the guidance for sampling. |
|
|
"uncond" or "classifier" or "classifier-free". |
|
|
condition: A pytorch tensor. The condition for the guided sampling. |
|
|
Only used for "classifier" or "classifier-free" guidance type. |
|
|
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling. |
|
|
Only used for "classifier-free" guidance type. |
|
|
guidance_scale: A `float`. The scale for the guided sampling. |
|
|
classifier_fn: A classifier function. Only used for the classifier guidance. |
|
|
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function. |
|
|
Returns: |
|
|
A noise prediction model that accepts the noised data and the continuous time as the inputs. |
|
|
""" |
|
|
|
|
|
def get_model_input_time(t_continuous): |
|
|
""" |
|
|
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. |
|
|
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N]. |
|
|
For continuous-time DPMs, we just use `t_continuous`. |
|
|
""" |
|
|
if noise_schedule.schedule == "discrete": |
|
|
return (t_continuous - 1.0 / noise_schedule.total_N) * 1000.0 |
|
|
else: |
|
|
return t_continuous |
|
|
|
|
|
def noise_pred_fn(x, t_continuous, cond=None): |
|
|
if t_continuous.reshape((-1,)).shape[0] == 1: |
|
|
t_continuous = t_continuous.expand((x.shape[0])) |
|
|
t_input = get_model_input_time(t_continuous) |
|
|
if cond is None: |
|
|
output = model(x, t_input, None, **model_kwargs) |
|
|
else: |
|
|
output = model(x, t_input, cond, **model_kwargs) |
|
|
if model_type == "noise": |
|
|
return output |
|
|
elif model_type == "x_start": |
|
|
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) |
|
|
dims = x.dim() |
|
|
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims) |
|
|
elif model_type == "v": |
|
|
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous) |
|
|
dims = x.dim() |
|
|
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x |
|
|
elif model_type == "score": |
|
|
sigma_t = noise_schedule.marginal_std(t_continuous) |
|
|
dims = x.dim() |
|
|
return -expand_dims(sigma_t, dims) * output |
|
|
|
|
|
def cond_grad_fn(x, t_input): |
|
|
""" |
|
|
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t). |
|
|
""" |
|
|
with torch.enable_grad(): |
|
|
x_in = x.detach().requires_grad_(True) |
|
|
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs) |
|
|
return torch.autograd.grad(log_prob.sum(), x_in)[0] |
|
|
|
|
|
def model_fn(x, t_continuous): |
|
|
""" |
|
|
The noise predicition model function that is used for DPM-Solver. |
|
|
""" |
|
|
if t_continuous.reshape((-1,)).shape[0] == 1: |
|
|
t_continuous = t_continuous.expand((x.shape[0])) |
|
|
if guidance_type == "uncond": |
|
|
return noise_pred_fn(x, t_continuous) |
|
|
elif guidance_type == "classifier": |
|
|
assert classifier_fn is not None |
|
|
t_input = get_model_input_time(t_continuous) |
|
|
cond_grad = cond_grad_fn(x, t_input) |
|
|
sigma_t = noise_schedule.marginal_std(t_continuous) |
|
|
noise = noise_pred_fn(x, t_continuous) |
|
|
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad |
|
|
elif guidance_type == "classifier-free": |
|
|
if guidance_scale == 1.0 or unconditional_condition is None: |
|
|
return noise_pred_fn(x, t_continuous, cond=condition) |
|
|
else: |
|
|
x_in = torch.cat([x] * 2) |
|
|
t_in = torch.cat([t_continuous] * 2) |
|
|
if isinstance(condition, torch.Tensor) and ( isinstance(unconditional_condition, torch.Tensor) or unconditional_condition is None ): |
|
|
c_in = torch.cat([unconditional_condition, condition]) |
|
|
else: |
|
|
c_in = [condition, unconditional_condition] |
|
|
|
|
|
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) |
|
|
return noise_uncond + guidance_scale * (noise - noise_uncond) |
|
|
|
|
|
assert model_type in ["noise", "x_start", "v"] |
|
|
assert guidance_type in ["uncond", "classifier", "classifier-free"] |
|
|
return model_fn |
|
|
|
|
|
|
|
|
def weighted_cumsumexp_trapezoid(a, x, b, cumsum=True): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assert x.shape[0] == a.shape[0] and x.ndim == a.ndim |
|
|
if b is not None: |
|
|
assert a.shape[0] == b.shape[0] and a.ndim == b.ndim |
|
|
|
|
|
a_max = np.amax(a, axis=0, keepdims=True) |
|
|
|
|
|
if b is not None: |
|
|
b = np.asarray(b) |
|
|
tmp = b * np.exp(a - a_max) |
|
|
else: |
|
|
tmp = np.exp(a - a_max) |
|
|
|
|
|
out = 0.5 * (x[1:] - x[:-1]) * (tmp[1:] + tmp[:-1]) |
|
|
if not cumsum: |
|
|
return np.sum(out, axis=0) * np.exp(a_max) |
|
|
out = np.cumsum(out, axis=0) |
|
|
out *= np.exp(a_max) |
|
|
return np.concatenate([np.zeros_like(out[[0]]), out], axis=0) |
|
|
|
|
|
|
|
|
def weighted_cumsumexp_trapezoid_torch(a, x, b, cumsum=True): |
|
|
assert x.shape[0] == a.shape[0] and x.ndim == a.ndim |
|
|
if b is not None: |
|
|
assert a.shape[0] == b.shape[0] and a.ndim == b.ndim |
|
|
|
|
|
a_max = torch.amax(a, dim=0, keepdims=True) |
|
|
|
|
|
if b is not None: |
|
|
tmp = b * torch.exp(a - a_max) |
|
|
else: |
|
|
tmp = torch.exp(a - a_max) |
|
|
|
|
|
out = 0.5 * (x[1:] - x[:-1]) * (tmp[1:] + tmp[:-1]) |
|
|
if not cumsum: |
|
|
return torch.sum(out, dim=0) * torch.exp(a_max) |
|
|
out = torch.cumsum(out, dim=0) |
|
|
out *= torch.exp(a_max) |
|
|
return torch.concat([torch.zeros_like(out[[0]]), out], dim=0) |
|
|
|
|
|
|
|
|
def index_list(lst, index): |
|
|
new_lst = [] |
|
|
for i in index: |
|
|
new_lst.append(lst[i]) |
|
|
return new_lst |
|
|
|
|
|
|
|
|
class DPM_Solver_v3: |
|
|
def __init__( |
|
|
self, |
|
|
statistics_dir, |
|
|
noise_schedule, |
|
|
steps=10, |
|
|
t_start=None, |
|
|
t_end=None, |
|
|
skip_type="time_uniform", |
|
|
degenerated=False, |
|
|
device="cuda", |
|
|
): |
|
|
self.device = device |
|
|
self.model = None |
|
|
self.noise_schedule = noise_schedule |
|
|
self.steps = steps |
|
|
t_0 = 1.0 / self.noise_schedule.total_N if t_end is None else t_end |
|
|
t_T = self.noise_schedule.T if t_start is None else t_start |
|
|
assert ( |
|
|
t_0 > 0 and t_T > 0 |
|
|
), "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array" |
|
|
|
|
|
l = np.load(os.path.join(statistics_dir, "l.npz"))["l"] |
|
|
sb = np.load(os.path.join(statistics_dir, "sb.npz")) |
|
|
s, b = sb["s"], sb["b"] |
|
|
if degenerated: |
|
|
l = np.ones_like(l) |
|
|
s = np.zeros_like(s) |
|
|
b = np.zeros_like(b) |
|
|
self.statistics_steps = l.shape[0] - 1 |
|
|
ts = noise_schedule.marginal_lambda( |
|
|
self.get_time_steps("logSNR", t_T, t_0, self.statistics_steps, "cpu") |
|
|
).numpy()[:, None, None, None] |
|
|
self.ts = torch.from_numpy(ts).cuda() |
|
|
self.lambda_T = self.ts[0].cpu().item() |
|
|
self.lambda_0 = self.ts[-1].cpu().item() |
|
|
z = np.zeros_like(l) |
|
|
o = np.ones_like(l) |
|
|
L = weighted_cumsumexp_trapezoid(z, ts, l) |
|
|
S = weighted_cumsumexp_trapezoid(z, ts, s) |
|
|
|
|
|
I = weighted_cumsumexp_trapezoid(L + S, ts, o) |
|
|
B = weighted_cumsumexp_trapezoid(-S, ts, b) |
|
|
C = weighted_cumsumexp_trapezoid(L + S, ts, B) |
|
|
self.l = torch.from_numpy(l).cuda() |
|
|
self.s = torch.from_numpy(s).cuda() |
|
|
self.b = torch.from_numpy(b).cuda() |
|
|
self.L = torch.from_numpy(L).cuda() |
|
|
self.S = torch.from_numpy(S).cuda() |
|
|
self.I = torch.from_numpy(I).cuda() |
|
|
self.B = torch.from_numpy(B).cuda() |
|
|
self.C = torch.from_numpy(C).cuda() |
|
|
|
|
|
|
|
|
if skip_type == "logSNR" or skip_type == "time_uniform" or skip_type == "time_quadratic" or skip_type == "customed_time_karras": |
|
|
self.timesteps = self.get_time_steps(skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) |
|
|
self.indexes = self.convert_to_indexes(self.timesteps) |
|
|
self.timesteps = self.convert_to_timesteps(self.indexes, device) |
|
|
elif skip_type == "edm": |
|
|
self.indexes, self.timesteps = self.get_timesteps_edm(N=steps, device=device) |
|
|
self.timesteps = self.convert_to_timesteps(self.indexes, device) |
|
|
else: |
|
|
raise ValueError(f"Unsupported timestep strategy {skip_type}") |
|
|
|
|
|
print("Indexes", self.indexes) |
|
|
print("Time steps", self.timesteps) |
|
|
print("LogSNR steps", self.noise_schedule.marginal_lambda(self.timesteps)) |
|
|
|
|
|
|
|
|
self.exp_coeffs = {} |
|
|
|
|
|
def noise_prediction_fn(self, x, t): |
|
|
""" |
|
|
Return the noise prediction model. |
|
|
""" |
|
|
return self.model(x, t) |
|
|
|
|
|
def convert_to_indexes(self, timesteps): |
|
|
logSNR_steps = self.noise_schedule.marginal_lambda(timesteps) |
|
|
indexes = list( |
|
|
(self.statistics_steps * (logSNR_steps - self.lambda_T) / (self.lambda_0 - self.lambda_T)) |
|
|
.round() |
|
|
.cpu() |
|
|
.numpy() |
|
|
.astype(np.int64) |
|
|
) |
|
|
return indexes |
|
|
|
|
|
def convert_to_timesteps(self, indexes, device): |
|
|
logSNR_steps = ( |
|
|
self.lambda_T + (self.lambda_0 - self.lambda_T) * torch.Tensor(indexes).to(device) / self.statistics_steps |
|
|
) |
|
|
return self.noise_schedule.inverse_lambda(logSNR_steps) |
|
|
|
|
|
def append_zero(self, x): |
|
|
return torch.cat([x, x.new_zeros([1])]) |
|
|
|
|
|
def get_sigmas_karras(self, n, sigma_min, sigma_max, rho=7., device='cpu', need_append_zero=True): |
|
|
"""Constructs the noise schedule of Karras et al. (2022).""" |
|
|
ramp = torch.linspace(0, 1, n) |
|
|
min_inv_rho = sigma_min ** (1 / rho) |
|
|
max_inv_rho = sigma_max ** (1 / rho) |
|
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
|
return self.append_zero(sigmas).to(device) if need_append_zero else sigmas.to(device) |
|
|
|
|
|
def sigma_to_t(self, sigma, quantize=None): |
|
|
quantize = False |
|
|
log_sigma = sigma.log() |
|
|
dists = log_sigma - self.noise_schedule.log_sigmas[:, None] |
|
|
if quantize: |
|
|
return dists.abs().argmin(dim=0).view(sigma.shape) |
|
|
low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.noise_schedule.log_sigmas.shape[0] - 2) |
|
|
high_idx = low_idx + 1 |
|
|
low, high = self.noise_schedule.log_sigmas[low_idx], self.noise_schedule.log_sigmas[high_idx] |
|
|
w = (low - log_sigma) / (low - high) |
|
|
w = w.clamp(0, 1) |
|
|
t = (1 - w) * low_idx + w * high_idx |
|
|
return t.view(sigma.shape) |
|
|
|
|
|
def get_time_steps(self, skip_type, t_T, t_0, N, device): |
|
|
"""Compute the intermediate time steps for sampling. |
|
|
|
|
|
Args: |
|
|
skip_type: A `str`. The type for the spacing of the time steps. We support three types: |
|
|
- 'logSNR': uniform logSNR for the time steps. |
|
|
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.) |
|
|
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) |
|
|
t_T: A `float`. The starting time of the sampling (default is T). |
|
|
t_0: A `float`. The ending time of the sampling (default is epsilon). |
|
|
N: A `int`. The total number of the spacing of the time steps. |
|
|
device: A torch device. |
|
|
Returns: |
|
|
A pytorch tensor of the time steps, with the shape (N + 1,). |
|
|
""" |
|
|
if skip_type == "logSNR": |
|
|
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) |
|
|
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) |
|
|
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) |
|
|
return self.noise_schedule.inverse_lambda(logSNR_steps) |
|
|
elif skip_type == "time_uniform": |
|
|
return torch.linspace(t_T, t_0, N + 1).to(device) |
|
|
elif skip_type == "time_quadratic": |
|
|
t_order = 2 |
|
|
t = torch.linspace(t_T ** (1.0 / t_order), t_0 ** (1.0 / t_order), N + 1).pow(t_order).to(device) |
|
|
return t |
|
|
elif skip_type == "customed_time_karras": |
|
|
sigma_T = self.noise_schedule.sigmas[-1].cpu().item() |
|
|
sigma_0 = self.noise_schedule.sigmas[0].cpu().item() |
|
|
if N == 8: |
|
|
sigmas = self.get_sigmas_karras(12, sigma_0, sigma_T, rho=7.0, device=device) |
|
|
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[9]) |
|
|
ct = self.get_sigmas_karras(9, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy() |
|
|
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device) |
|
|
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct] |
|
|
elif N == 5: |
|
|
sigmas = self.get_sigmas_karras(8, sigma_0, sigma_T, rho=5.0, device=device) |
|
|
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[6]) |
|
|
ct = self.get_sigmas_karras(6, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy() |
|
|
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device) |
|
|
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct] |
|
|
elif N == 6: |
|
|
sigmas = self.sigmas = self.get_sigmas_karras(8, sigma_0, sigma_T, rho=5.0, device=device) |
|
|
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[6]) |
|
|
ct = self.get_sigmas_karras(7, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy() |
|
|
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device) |
|
|
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct] |
|
|
none_k_ct = torch.from_numpy(np.array(real_ct)).to(device) |
|
|
return none_k_ct |
|
|
else: |
|
|
raise ValueError( |
|
|
"Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type) |
|
|
) |
|
|
|
|
|
def get_timesteps_edm(self, N, device): |
|
|
"""Constructs the noise schedule of Karras et al. (2022).""" |
|
|
|
|
|
rho = 7.0 |
|
|
|
|
|
sigma_min: float = np.exp(-self.lambda_0) |
|
|
sigma_max: float = np.exp(-self.lambda_T) |
|
|
ramp = np.linspace(0, 1, N + 1) |
|
|
min_inv_rho = sigma_min ** (1 / rho) |
|
|
max_inv_rho = sigma_max ** (1 / rho) |
|
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
|
lambdas = torch.Tensor(-np.log(sigmas)).to(device) |
|
|
timesteps = self.noise_schedule.inverse_lambda(lambdas) |
|
|
|
|
|
indexes = list( |
|
|
(self.statistics_steps * (lambdas - self.lambda_T) / (self.lambda_0 - self.lambda_T)) |
|
|
.round() |
|
|
.cpu() |
|
|
.numpy() |
|
|
.astype(np.int64) |
|
|
) |
|
|
return indexes, timesteps |
|
|
|
|
|
def get_g(self, f_t, i_s, i_t): |
|
|
return torch.exp(self.S[i_s] - self.S[i_t]) * f_t - torch.exp(self.S[i_s]) * (self.B[i_t] - self.B[i_s]) |
|
|
|
|
|
def compute_exponential_coefficients_high_order(self, i_s, i_t, order=2): |
|
|
key = (i_s, i_t, order) |
|
|
if key in self.exp_coeffs.keys(): |
|
|
coeffs = self.exp_coeffs[key] |
|
|
else: |
|
|
n = order - 1 |
|
|
a = self.L[i_s : i_t + 1] + self.S[i_s : i_t + 1] - self.L[i_s] - self.S[i_s] |
|
|
x = self.ts[i_s : i_t + 1] |
|
|
b = (self.ts[i_s : i_t + 1] - self.ts[i_s]) ** n / math.factorial(n) |
|
|
coeffs = weighted_cumsumexp_trapezoid_torch(a, x, b, cumsum=False) |
|
|
self.exp_coeffs[key] = coeffs |
|
|
return coeffs |
|
|
|
|
|
def compute_high_order_derivatives(self, n, lambda_0n, g_0n, pseudo=False): |
|
|
|
|
|
if pseudo: |
|
|
D = [[] for _ in range(n + 1)] |
|
|
D[0] = g_0n |
|
|
for i in range(1, n + 1): |
|
|
for j in range(n - i + 1): |
|
|
D[i].append((D[i - 1][j] - D[i - 1][j + 1]) / (lambda_0n[j] - lambda_0n[i + j])) |
|
|
|
|
|
return [D[i][0] * math.factorial(i) for i in range(1, n + 1)] |
|
|
else: |
|
|
R = [] |
|
|
for i in range(1, n + 1): |
|
|
R.append(torch.pow(lambda_0n[1:] - lambda_0n[0], i)) |
|
|
R = torch.stack(R).t() |
|
|
B = (torch.stack(g_0n[1:]) - g_0n[0]).reshape(n, -1) |
|
|
shape = g_0n[0].shape |
|
|
solution = torch.linalg.inv(R) @ B |
|
|
solution = solution.reshape([n] + list(shape)) |
|
|
return [solution[i - 1] * math.factorial(i) for i in range(1, n + 1)] |
|
|
|
|
|
def multistep_predictor_update(self, x_lst, eps_lst, time_lst, index_lst, t, i_t, order=1, pseudo=False): |
|
|
|
|
|
|
|
|
|
|
|
ns = self.noise_schedule |
|
|
n = order - 1 |
|
|
indexes = [-i - 1 for i in range(n + 1)] |
|
|
x_0n = index_list(x_lst, indexes) |
|
|
eps_0n = index_list(eps_lst, indexes) |
|
|
time_0n = torch.FloatTensor(index_list(time_lst, indexes)).cuda() |
|
|
index_0n = index_list(index_lst, indexes) |
|
|
lambda_0n = ns.marginal_lambda(time_0n) |
|
|
alpha_0n = ns.marginal_alpha(time_0n) |
|
|
sigma_0n = ns.marginal_std(time_0n) |
|
|
|
|
|
alpha_s, alpha_t = alpha_0n[0], ns.marginal_alpha(t) |
|
|
i_s = index_0n[0] |
|
|
x_s = x_0n[0] |
|
|
g_0n = [] |
|
|
for i in range(n + 1): |
|
|
f_i = (sigma_0n[i] * eps_0n[i] - self.l[index_0n[i]] * x_0n[i]) / alpha_0n[i] |
|
|
g_i = self.get_g(f_i, index_0n[0], index_0n[i]) |
|
|
g_0n.append(g_i) |
|
|
g_0 = g_0n[0] |
|
|
x_t = ( |
|
|
alpha_t / alpha_s * torch.exp(self.L[i_s] - self.L[i_t]) * x_s |
|
|
- alpha_t * torch.exp(-self.L[i_t] - self.S[i_s]) * (self.I[i_t] - self.I[i_s]) * g_0 |
|
|
- alpha_t |
|
|
* torch.exp(-self.L[i_t]) |
|
|
* (self.C[i_t] - self.C[i_s] - self.B[i_s] * (self.I[i_t] - self.I[i_s])) |
|
|
) |
|
|
if order > 1: |
|
|
g_d = self.compute_high_order_derivatives(n, lambda_0n, g_0n, pseudo=pseudo) |
|
|
for i in range(order - 1): |
|
|
x_t = ( |
|
|
x_t |
|
|
- alpha_t |
|
|
* torch.exp(self.L[i_s] - self.L[i_t]) |
|
|
* self.compute_exponential_coefficients_high_order(i_s, i_t, order=i + 2) |
|
|
* g_d[i] |
|
|
) |
|
|
return x_t |
|
|
|
|
|
def multistep_corrector_update(self, x_lst, eps_lst, time_lst, index_lst, order=1, pseudo=False): |
|
|
|
|
|
|
|
|
|
|
|
ns = self.noise_schedule |
|
|
n = order - 1 |
|
|
indexes = [-i - 1 for i in range(n + 1)] |
|
|
indexes[0] = -2 |
|
|
indexes[1] = -1 |
|
|
x_0n = index_list(x_lst, indexes) |
|
|
eps_0n = index_list(eps_lst, indexes) |
|
|
time_0n = torch.FloatTensor(index_list(time_lst, indexes)).cuda() |
|
|
index_0n = index_list(index_lst, indexes) |
|
|
lambda_0n = ns.marginal_lambda(time_0n) |
|
|
alpha_0n = ns.marginal_alpha(time_0n) |
|
|
sigma_0n = ns.marginal_std(time_0n) |
|
|
|
|
|
alpha_s, alpha_t = alpha_0n[0], alpha_0n[1] |
|
|
i_s, i_t = index_0n[0], index_0n[1] |
|
|
x_s = x_0n[0] |
|
|
g_0n = [] |
|
|
for i in range(n + 1): |
|
|
f_i = (sigma_0n[i] * eps_0n[i] - self.l[index_0n[i]] * x_0n[i]) / alpha_0n[i] |
|
|
g_i = self.get_g(f_i, index_0n[0], index_0n[i]) |
|
|
g_0n.append(g_i) |
|
|
g_0 = g_0n[0] |
|
|
x_t_new = ( |
|
|
alpha_t / alpha_s * torch.exp(self.L[i_s] - self.L[i_t]) * x_s |
|
|
- alpha_t * torch.exp(-self.L[i_t] - self.S[i_s]) * (self.I[i_t] - self.I[i_s]) * g_0 |
|
|
- alpha_t |
|
|
* torch.exp(-self.L[i_t]) |
|
|
* (self.C[i_t] - self.C[i_s] - self.B[i_s] * (self.I[i_t] - self.I[i_s])) |
|
|
) |
|
|
if order > 1: |
|
|
g_d = self.compute_high_order_derivatives(n, lambda_0n, g_0n, pseudo=pseudo) |
|
|
for i in range(order - 1): |
|
|
x_t_new = ( |
|
|
x_t_new |
|
|
- alpha_t |
|
|
* torch.exp(self.L[i_s] - self.L[i_t]) |
|
|
* self.compute_exponential_coefficients_high_order(i_s, i_t, order=i + 2) |
|
|
* g_d[i] |
|
|
) |
|
|
return x_t_new |
|
|
|
|
|
def sample( |
|
|
self, |
|
|
x, |
|
|
model_fn, |
|
|
order, |
|
|
p_pseudo, |
|
|
use_corrector, |
|
|
c_pseudo, |
|
|
lower_order_final, |
|
|
start_free_u_step=None, |
|
|
free_u_apply_callback=None, |
|
|
free_u_stop_callback=None, |
|
|
half=False, |
|
|
return_intermediate=False, |
|
|
): |
|
|
self.model = lambda x, t: model_fn(x, t.expand((x.shape[0]))) |
|
|
steps = self.steps |
|
|
cached_x = [] |
|
|
cached_model_output = [] |
|
|
cached_time = [] |
|
|
cached_index = [] |
|
|
indexes, timesteps = self.indexes, self.timesteps |
|
|
step_p_order = 0 |
|
|
if free_u_stop_callback is not None: |
|
|
free_u_stop_callback() |
|
|
for step in range(1, steps + 1): |
|
|
if start_free_u_step is not None and step == start_free_u_step and free_u_apply_callback is not None: |
|
|
free_u_apply_callback() |
|
|
cached_x.append(x) |
|
|
cached_model_output.append(self.noise_prediction_fn(x, timesteps[step - 1])) |
|
|
cached_time.append(timesteps[step - 1]) |
|
|
cached_index.append(indexes[step - 1]) |
|
|
if use_corrector and (timesteps[step - 1] > 0.5 or not half): |
|
|
step_c_order = step_p_order + c_pseudo |
|
|
if step_c_order > 1: |
|
|
x_new = self.multistep_corrector_update( |
|
|
cached_x, cached_model_output, cached_time, cached_index, order=step_c_order, pseudo=c_pseudo |
|
|
) |
|
|
sigma_t = self.noise_schedule.marginal_std(cached_time[-1]) |
|
|
l_t = self.l[cached_index[-1]] |
|
|
N_old = sigma_t * cached_model_output[-1] - l_t * cached_x[-1] |
|
|
cached_x[-1] = x_new |
|
|
cached_model_output[-1] = (N_old + l_t * cached_x[-1]) / sigma_t |
|
|
if step < order: |
|
|
step_p_order = step |
|
|
else: |
|
|
step_p_order = order |
|
|
if lower_order_final: |
|
|
step_p_order = min(step_p_order, steps + 1 - step) |
|
|
t = timesteps[step] |
|
|
i_t = indexes[step] |
|
|
|
|
|
x = self.multistep_predictor_update( |
|
|
cached_x, cached_model_output, cached_time, cached_index, t, i_t, order=step_p_order, pseudo=p_pseudo |
|
|
) |
|
|
|
|
|
if return_intermediate: |
|
|
return x, cached_x |
|
|
else: |
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def interpolate_fn(x, xp, yp): |
|
|
""" |
|
|
A piecewise linear function y = f(x), using xp and yp as keypoints. |
|
|
We implement f(x) in a differentiable way (i.e. applicable for autograd). |
|
|
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.) |
|
|
|
|
|
Args: |
|
|
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver). |
|
|
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints. |
|
|
yp: PyTorch tensor with shape [C, K]. |
|
|
Returns: |
|
|
The function values f(x), with shape [N, C]. |
|
|
""" |
|
|
N, K = x.shape[0], xp.shape[1] |
|
|
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2) |
|
|
sorted_all_x, x_indices = torch.sort(all_x, dim=2) |
|
|
x_idx = torch.argmin(x_indices, dim=2) |
|
|
cand_start_idx = x_idx - 1 |
|
|
start_idx = torch.where( |
|
|
torch.eq(x_idx, 0), |
|
|
torch.tensor(1, device=x.device), |
|
|
torch.where( |
|
|
torch.eq(x_idx, K), |
|
|
torch.tensor(K - 2, device=x.device), |
|
|
cand_start_idx, |
|
|
), |
|
|
) |
|
|
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) |
|
|
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) |
|
|
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) |
|
|
start_idx2 = torch.where( |
|
|
torch.eq(x_idx, 0), |
|
|
torch.tensor(0, device=x.device), |
|
|
torch.where( |
|
|
torch.eq(x_idx, K), |
|
|
torch.tensor(K - 2, device=x.device), |
|
|
cand_start_idx, |
|
|
), |
|
|
) |
|
|
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1) |
|
|
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) |
|
|
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) |
|
|
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) |
|
|
return cand |
|
|
|
|
|
|
|
|
def expand_dims(v, dims): |
|
|
""" |
|
|
Expand the tensor `v` to the dim `dims`. |
|
|
|
|
|
Args: |
|
|
`v`: a PyTorch tensor with shape [N]. |
|
|
`dim`: a `int`. |
|
|
Returns: |
|
|
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`. |
|
|
""" |
|
|
return v[(...,) + (None,) * (dims - 1)] |
|
|
|