|
|
import gradio as gr |
|
|
import numpy as np |
|
|
import random |
|
|
import json |
|
|
import spaces |
|
|
from diffusers import ( |
|
|
AutoencoderKL, |
|
|
StableDiffusionXLPipeline, |
|
|
DPMSolverMultistepScheduler |
|
|
) |
|
|
from huggingface_hub import login, hf_hub_download |
|
|
from PIL import Image |
|
|
|
|
|
from SVDNoiseUnet import NPNet64 |
|
|
import functools |
|
|
import random |
|
|
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from einops import rearrange |
|
|
from torchvision.utils import make_grid |
|
|
import time |
|
|
from pytorch_lightning import seed_everything |
|
|
from torch import autocast |
|
|
from contextlib import contextmanager, nullcontext |
|
|
import accelerate |
|
|
import torchsde |
|
|
from SVDNoiseUnet import NPNet128 |
|
|
from tqdm import tqdm, trange |
|
|
from itertools import islice |
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
model_repo_id = "Lykon/dreamshaper-xl-1-0" |
|
|
from sampler import UniPCSampler |
|
|
from customed_unipc_scheduler import CustomedUniPCMultistepScheduler |
|
|
|
|
|
precision_scope = autocast |
|
|
|
|
|
def extract_into_tensor(a, t, x_shape): |
|
|
b, *_ = t.shape |
|
|
out = a.gather(-1, t) |
|
|
return out.reshape(b, *((1,) * (len(x_shape) - 1))) |
|
|
|
|
|
|
|
|
def append_zero(x): |
|
|
return torch.cat([x, x.new_zeros([1])]) |
|
|
|
|
|
def prepare_sdxl_pipeline_step_parameter( pipe: StableDiffusionXLPipeline |
|
|
, prompts |
|
|
, need_cfg |
|
|
, device |
|
|
, negative_prompt = None |
|
|
, W = 1024 |
|
|
, H = 1024): |
|
|
( |
|
|
prompt_embeds, |
|
|
negative_prompt_embeds, |
|
|
pooled_prompt_embeds, |
|
|
negative_pooled_prompt_embeds, |
|
|
) = pipe.encode_prompt( |
|
|
prompt=prompts, |
|
|
negative_prompt=negative_prompt, |
|
|
device=device, |
|
|
do_classifier_free_guidance=need_cfg, |
|
|
) |
|
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds.to(device) |
|
|
add_text_embeds = pooled_prompt_embeds.to(device) |
|
|
original_size = (W, H) |
|
|
crops_coords_top_left = (0, 0) |
|
|
target_size = (W, H) |
|
|
text_encoder_projection_dim = None |
|
|
add_time_ids = list(original_size + crops_coords_top_left + target_size) |
|
|
if pipe.text_encoder_2 is None: |
|
|
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) |
|
|
else: |
|
|
text_encoder_projection_dim = pipe.text_encoder_2.config.projection_dim |
|
|
passed_add_embed_dim = ( |
|
|
pipe.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim |
|
|
) |
|
|
expected_add_embed_dim = pipe.unet.add_embedding.linear_1.in_features |
|
|
if expected_add_embed_dim != passed_add_embed_dim: |
|
|
raise ValueError( |
|
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." |
|
|
) |
|
|
add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype) |
|
|
add_time_ids = add_time_ids.to(device) |
|
|
negative_add_time_ids = add_time_ids |
|
|
|
|
|
if need_cfg: |
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) |
|
|
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) |
|
|
ret_dict = { |
|
|
"text_embeds": add_text_embeds, |
|
|
"time_ids": add_time_ids |
|
|
} |
|
|
return prompt_embeds, ret_dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_preference_json(json_path: str) -> list[dict]: |
|
|
"""Load records from a JSON file formatted as a list of preference dicts.""" |
|
|
with open(json_path, 'r') as f: |
|
|
data = json.load(f) |
|
|
return data |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_prompts_from_pref_json(json_path: str) -> list[str]: |
|
|
"""Load a JSON of preference records and return only the prompts.""" |
|
|
records = load_preference_json(json_path) |
|
|
return [rec['prompt'] for rec in records] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu',need_append_zero = True): |
|
|
"""Constructs the noise schedule of Karras et al. (2022).""" |
|
|
ramp = torch.linspace(0, 1, n) |
|
|
min_inv_rho = sigma_min ** (1 / rho) |
|
|
max_inv_rho = sigma_max ** (1 / rho) |
|
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
|
return append_zero(sigmas).to(device) if need_append_zero else sigmas.to(device) |
|
|
|
|
|
def extract_into_tensor(a, t, x_shape): |
|
|
b, *_ = t.shape |
|
|
out = a.gather(-1, t) |
|
|
return out.reshape(b, *((1,) * (len(x_shape) - 1))) |
|
|
|
|
|
def append_zero(x): |
|
|
return torch.cat([x, x.new_zeros([1])]) |
|
|
|
|
|
def append_dims(x, target_dims): |
|
|
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.""" |
|
|
dims_to_append = target_dims - x.ndim |
|
|
if dims_to_append < 0: |
|
|
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') |
|
|
return x[(...,) + (None,) * dims_to_append] |
|
|
|
|
|
|
|
|
def chunk(it, size): |
|
|
it = iter(it) |
|
|
return iter(lambda: tuple(islice(it, size)), ()) |
|
|
|
|
|
def convert_caption_json_to_str(json): |
|
|
caption = json["caption"] |
|
|
return caption |
|
|
|
|
|
|
|
|
torch_dtype = torch.float16 |
|
|
repo_id = "madebyollin/sdxl-vae-fp16-fix" |
|
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix",torch_dtype=torch_dtype) |
|
|
vae.to('cuda') |
|
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("John6666/nova-anime-xl-il-v120-sdxl",torch_dtype=torch_dtype,vae=vae) |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
|
|
accelerator = accelerate.Accelerator() |
|
|
|
|
|
def generate_image_with_steps(prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps): |
|
|
"""Helper function to generate image with specific number of steps""" |
|
|
scheduler = CustomedUniPCMultistepScheduler.from_config(pipe.scheduler.config |
|
|
, solver_order = 2 if num_inference_steps==8 else 1 |
|
|
,denoise_to_zero = False |
|
|
, use_afs=True) |
|
|
pipe.scheduler = scheduler |
|
|
pipe.to('cuda') |
|
|
with torch.no_grad(): |
|
|
with precision_scope("cuda"): |
|
|
prompts = [prompt] |
|
|
|
|
|
latents = torch.randn( |
|
|
(1, pipe.unet.config.in_channels, height // 8, width // 8), |
|
|
device=device, |
|
|
) |
|
|
latents = latents * pipe.scheduler.init_noise_sigma |
|
|
|
|
|
pipe.scheduler.set_timesteps(num_inference_steps) |
|
|
idx = 0 |
|
|
register_free_upblock2d(pipe, b1=1.0, b2=1.0, s1=1.0, s2=1.0) |
|
|
register_free_crossattn_upblock2d(pipe, b1=1.0, b2=1.0, s1=1.0, s2=1.0) |
|
|
for t in tqdm(pipe.scheduler.timesteps): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if idx == -1: |
|
|
register_free_upblock2d(pipe, b1=1.2, b2=1.2, s1=0.9, s2=0.9) |
|
|
register_free_crossattn_upblock2d(pipe, b1=1.2, b2=1.2, s1=0.9, s2=0.9) |
|
|
latent_model_input = torch.cat([latents] * 2) |
|
|
|
|
|
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input , timestep=t) |
|
|
negative_prompts = '(worst quality:2), (low quality:2), (normal quality:2), bad anatomy, bad proportions, poorly drawn face, poorly drawn hands, missing fingers, extra limbs, blurry, pixelated, distorted, lowres, jpeg artifacts, watermark, signature, text, (deformed:1.5), (bad hands:1.3), overexposed, underexposed, censored, mutated, extra fingers, cloned face, bad eyes' |
|
|
negative_prompts = 1 * [negative_prompts] |
|
|
use_afs = num_inference_steps < 7 |
|
|
use_free_predictor = False |
|
|
prompt_embeds, cond_kwargs = prepare_sdxl_pipeline_step_parameter(pipe |
|
|
, prompts |
|
|
, need_cfg=True |
|
|
, device=pipe.device |
|
|
, negative_prompt=negative_prompts |
|
|
, W=width |
|
|
, H=height) |
|
|
if idx == 0 and use_afs: |
|
|
noise_pred = latent_model_input * 0.975 |
|
|
elif idx == len(pipe.scheduler.timesteps) - 1 and use_free_predictor: |
|
|
noise_pred = None |
|
|
else: |
|
|
noise_pred = pipe.unet(latent_model_input |
|
|
, t |
|
|
, encoder_hidden_states=prompt_embeds.to(device=latents.device, dtype=latents.dtype) |
|
|
, added_cond_kwargs=cond_kwargs).sample |
|
|
if noise_pred is not None: |
|
|
uncond, cond = noise_pred.chunk(2) |
|
|
noise_pred = uncond + (cond - uncond) * guidance_scale |
|
|
latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample |
|
|
idx += 1 |
|
|
|
|
|
x_samples_ddim = pipe.vae.decode(latents / pipe.vae.config.scaling_factor).sample |
|
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) |
|
|
if True: |
|
|
for x_sample in x_samples_ddim: |
|
|
|
|
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') |
|
|
img = Image.fromarray(x_sample.astype(np.uint8)) |
|
|
return img |
|
|
|
|
|
@spaces.GPU |
|
|
def infer( |
|
|
prompt, |
|
|
negative_prompt, |
|
|
seed, |
|
|
randomize_seed, |
|
|
resolution, |
|
|
guidance_scale, |
|
|
num_inference_steps, |
|
|
progress=gr.Progress(track_tqdm=True), |
|
|
): |
|
|
if randomize_seed: |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
|
|
|
width, height = map(int, resolution.split('x')) |
|
|
|
|
|
|
|
|
image_quick = generate_image_with_steps(prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps) |
|
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, final_sigmas_type="sigma_min") |
|
|
|
|
|
negative_prompts = '(worst quality:2), (low quality:2), (normal quality:2), bad anatomy, bad proportions, poorly drawn face, poorly drawn hands, missing fingers, extra limbs, blurry, pixelated, distorted, lowres, jpeg artifacts, watermark, signature, text, (deformed:1.5), (bad hands:1.3), overexposed, underexposed, censored, mutated, extra fingers, cloned face, bad eyes' |
|
|
negative_prompts = 1 * [negative_prompts] |
|
|
image_50_steps = pipe(prompt=[prompt] |
|
|
,negative_prompt=negative_prompts |
|
|
,num_inference_steps=20 |
|
|
,guidance_scale=guidance_scale |
|
|
,height=height |
|
|
,width=width).images[0] |
|
|
return image_quick, image_50_steps, seed |
|
|
|
|
|
|
|
|
examples = [ |
|
|
"masterpiece, best quality, amazing quality, 4k, very aesthetic, high resolution, ultra-detailed, absurdres, newest, scenery, colorful, 1girl, solo, cute, pink hair, long hair, choppy bangs, long sidelocks, nebulae cosmic purple eyes, rimlit eyes, facing to the side, looking at viewer, downturned eyes, light smile, red annular solar eclipse halo, red choker, detailed purple serafuku, big red neckerchief, (glowing stars in hand:1.2), fingers, dispersion_\(optics\), arched back, from side, from below, dutch angle, portrait, upper body, head tilt, colorful, rim light, backlit, (colorful light particles:1.2), cosmic sky, aurora, chaos, perfect night, fantasy background, dreamlike atmosphere, BREAK, detailed background, blurry foreground, bokeh, depth of field, volumetric lighting", |
|
|
"masterpiece, best quality, amazing quality, 4k, very aesthetic, high resolution, ultra-detailed, absurdres, newest, scenery, 1girl, blonde hair, long hair, floating hair, blue eyes, looking at viewer, parted lips, medium breasts, puffy sleeve white dress, leaning side against tree, dutch angle, upper body, (portrait, close-up:1.2), foreshortening, vines, green, forest, flowers, white butterfly, BREAK, dramatic shadow, depth of field, vignetting, dappled sunlight, lens flare, backlighting, volumetric lighting", |
|
|
"masterpiece, best quality, amazing quality, 4k, very aesthetic, high resolution, ultra-detailed, absurdres, newest, scenery, 1girl, solo, long cat ears, white pillbox hat, brown hair, short hair, bob cut, hair flaps, long flipped sidelocks, floating hair, purple eyes, tsurime, turning head, looking at viewer, head tilt, smirk, smug, closed mouth, v-shaped eyebrows, doyagao, chef, patissier, wide long sleeve white double-breasted long dress, circle skirt, white apron, long cat tail, holding plate with cake on with hand, v, arched back, leaning forward, twisted torso, dutch angle, close-up, portrait, upper body, face focus, window, dappled sunlight, day, indoor, BREAK, depth of field, vignetting, volumetric lighting", |
|
|
] |
|
|
|
|
|
css = """ |
|
|
#col-container { |
|
|
margin: 0 auto; |
|
|
max-width: 640px; |
|
|
} |
|
|
""" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.HTML(f"<style>{css}</style>") |
|
|
with gr.Column(elem_id="col-container"): |
|
|
gr.Markdown(" # Hyperparameters are all you need") |
|
|
|
|
|
with gr.Row(): |
|
|
prompt = gr.Text( |
|
|
label="Prompt", |
|
|
show_label=False, |
|
|
max_lines=1, |
|
|
placeholder="Enter your prompt", |
|
|
container=False, |
|
|
) |
|
|
|
|
|
run_button = gr.Button("Run", scale=0, variant="primary") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
gr.Markdown("### Our fast inference Result using afs and uni-predictor to get 2 free steps") |
|
|
result = gr.Image(label="Quick Result", show_label=False) |
|
|
with gr.Column(): |
|
|
gr.Markdown("### Original 20 steps Result") |
|
|
result_20_steps = gr.Image(label="20 Steps Result", show_label=False) |
|
|
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
negative_prompt = gr.Text( |
|
|
label="Negative prompt", |
|
|
max_lines=1, |
|
|
placeholder="Enter a negative prompt", |
|
|
visible=False, |
|
|
) |
|
|
|
|
|
seed = gr.Slider( |
|
|
label="Seed", |
|
|
minimum=0, |
|
|
maximum=MAX_SEED, |
|
|
step=1, |
|
|
value=0, |
|
|
) |
|
|
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
|
|
resolution = gr.Dropdown( |
|
|
choices=[ |
|
|
"1024x1024", |
|
|
"1216x832", |
|
|
"832x1216" |
|
|
], |
|
|
value="1024x1024", |
|
|
label="Resolution", |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
guidance_scale = gr.Slider( |
|
|
label="Guidance scale", |
|
|
minimum=0.0, |
|
|
maximum=6.0, |
|
|
step=0.1, |
|
|
value=5.5, |
|
|
) |
|
|
|
|
|
num_inference_steps = gr.Dropdown( |
|
|
choices=[5, 6, 7, 8], |
|
|
value=8, |
|
|
label="Number of inference steps", |
|
|
) |
|
|
|
|
|
gr.Examples(examples=examples, inputs=[prompt]) |
|
|
gr.on( |
|
|
triggers=[run_button.click, prompt.submit], |
|
|
fn=infer, |
|
|
inputs=[ |
|
|
prompt, |
|
|
negative_prompt, |
|
|
seed, |
|
|
randomize_seed, |
|
|
resolution, |
|
|
guidance_scale, |
|
|
num_inference_steps, |
|
|
], |
|
|
outputs=[result, result_20_steps, seed], |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|