Spaces:
Running
on
T4
Running
on
T4
import sys | |
import io, os, stat | |
import subprocess | |
import random | |
from zipfile import ZipFile | |
import uuid | |
import time | |
import torch | |
import torchaudio | |
# By using XTTS you agree to CPML license https://coqui.ai/cpml | |
os.environ["COQUI_TOS_AGREED"] = "1" | |
# langid is used to detect language for longer text | |
# Most users expect text to be their own language, there is checkbox to disable it | |
import langid | |
import base64 | |
import csv | |
from io import StringIO | |
import datetime | |
import gradio as gr | |
from scipy.io.wavfile import write | |
from pydub import AudioSegment | |
from TTS.api import TTS | |
from TTS.tts.configs.xtts_config import XttsConfig | |
from TTS.tts.models.xtts import Xtts | |
from TTS.utils.generic_utils import get_user_data_dir | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
from huggingface_hub import HfApi | |
# will use api to restart space on a unrecoverable error | |
api = HfApi(token=HF_TOKEN) | |
repo_id = "coqui/xtts" | |
# Use never ffmpeg binary for Ubuntu20 to use denoising for microphone input | |
print("Export newer ffmpeg binary for denoise filter") | |
ZipFile("ffmpeg.zip").extractall() | |
print("Make ffmpeg binary executable") | |
st = os.stat("ffmpeg") | |
os.chmod("ffmpeg", st.st_mode | stat.S_IEXEC) | |
# This will trigger downloading model | |
print("Downloading if not downloaded Coqui XTTS V2") | |
from TTS.utils.manage import ModelManager | |
model_name = "tts_models/multilingual/multi-dataset/xtts_v2" | |
ModelManager().download_model(model_name) | |
model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--")) | |
print("XTTS downloaded") | |
config = XttsConfig() | |
config.load_json(os.path.join(model_path, "config.json")) | |
model = Xtts.init_from_config(config) | |
model.load_checkpoint( | |
config, | |
checkpoint_path=os.path.join(model_path, "model.pth"), | |
vocab_path=os.path.join(model_path, "vocab.json"), | |
eval=True, | |
use_deepspeed=True, | |
) | |
model.cuda() | |
# This is for debugging purposes only | |
DEVICE_ASSERT_DETECTED = 0 | |
DEVICE_ASSERT_PROMPT = None | |
DEVICE_ASSERT_LANG = None | |
supported_languages = config.languages | |
def predict( | |
prompt, | |
language, | |
audio_file_pth, | |
mic_file_path, | |
use_mic, | |
voice_cleanup, | |
no_lang_auto_detect, | |
agree, | |
): | |
if agree == True: | |
if language not in supported_languages: | |
gr.Warning( | |
f"Language you put {language} in is not in is not in our Supported Languages, please choose from dropdown" | |
) | |
return ( | |
None, | |
None, | |
None, | |
None, | |
) | |
language_predicted = langid.classify(prompt)[ | |
0 | |
].strip() # strip need as there is space at end! | |
# tts expects chinese as zh-cn | |
if language_predicted == "zh": | |
# we use zh-cn | |
language_predicted = "zh-cn" | |
print(f"Detected language:{language_predicted}, Chosen language:{language}") | |
# After text character length 15 trigger language detection | |
if len(prompt) > 15: | |
# allow any language for short text as some may be common | |
# If user unchecks language autodetection it will not trigger | |
# You may remove this completely for own use | |
if language_predicted != language and not no_lang_auto_detect: | |
# Please duplicate and remove this check if you really want this | |
# Or auto-detector fails to identify language (which it can on pretty short text or mixed text) | |
gr.Warning( | |
f"It looks like your text isn’t the language you chose , if you’re sure the text is the same language you chose, please check disable language auto-detection checkbox" | |
) | |
return ( | |
None, | |
None, | |
None, | |
None, | |
) | |
if use_mic == True: | |
if mic_file_path is not None: | |
speaker_wav = mic_file_path | |
else: | |
gr.Warning( | |
"Please record your voice with Microphone, or uncheck Use Microphone to use reference audios" | |
) | |
return ( | |
None, | |
None, | |
None, | |
None, | |
) | |
else: | |
speaker_wav = audio_file_pth | |
# Filtering for microphone input, as it has BG noise, maybe silence in beginning and end | |
# This is fast filtering not perfect | |
# Apply all on demand | |
lowpassfilter = denoise = trim = loudness = True | |
if lowpassfilter: | |
lowpass_highpass = "lowpass=8000,highpass=75," | |
else: | |
lowpass_highpass = "" | |
if trim: | |
# better to remove silence in beginning and end for microphone | |
trim_silence = "areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02," | |
else: | |
trim_silence = "" | |
if voice_cleanup: | |
try: | |
out_filename = ( | |
speaker_wav + str(uuid.uuid4()) + ".wav" | |
) # ffmpeg to know output format | |
# we will use newer ffmpeg as that has afftn denoise filter | |
shell_command = f"./ffmpeg -y -i {speaker_wav} -af {lowpass_highpass}{trim_silence} {out_filename}".split( | |
" " | |
) | |
command_result = subprocess.run( | |
[item for item in shell_command], | |
capture_output=False, | |
text=True, | |
check=True, | |
) | |
speaker_wav = out_filename | |
print("Filtered microphone input") | |
except subprocess.CalledProcessError: | |
# There was an error - command exited with non-zero code | |
print("Error: failed filtering, use original microphone input") | |
else: | |
speaker_wav = speaker_wav | |
if len(prompt) < 2: | |
gr.Warning("Please give a longer prompt text") | |
return ( | |
None, | |
None, | |
None, | |
None, | |
) | |
if len(prompt) > 200: | |
gr.Warning( | |
"Text length limited to 200 characters for this demo, please try shorter text. You can clone this space and edit code for your own usage" | |
) | |
return ( | |
None, | |
None, | |
None, | |
None, | |
) | |
global DEVICE_ASSERT_DETECTED | |
if DEVICE_ASSERT_DETECTED: | |
global DEVICE_ASSERT_PROMPT | |
global DEVICE_ASSERT_LANG | |
# It will likely never come here as we restart space on first unrecoverable error now | |
print( | |
f"Unrecoverable exception caused by language:{DEVICE_ASSERT_LANG} prompt:{DEVICE_ASSERT_PROMPT}" | |
) | |
try: | |
metrics_text = "" | |
t_latent = time.time() | |
# note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference | |
try: | |
( | |
gpt_cond_latent, | |
diffusion_conditioning, | |
speaker_embedding, | |
) = model.get_conditioning_latents(audio_path=speaker_wav) | |
except Exception as e: | |
print("Speaker encoding error", str(e)) | |
gr.Warning( | |
"It appears something wrong with reference, did you unmute your microphone?" | |
) | |
return ( | |
None, | |
None, | |
None, | |
None, | |
) | |
latent_calculation_time = time.time() - t_latent | |
# metrics_text=f"Embedding calculation time: {latent_calculation_time:.2f} seconds\n" | |
wav_chunks = [] | |
## Direct mode | |
""" | |
print("I: Generating new audio...") | |
t0 = time.time() | |
out = model.inference( | |
prompt, | |
language, | |
gpt_cond_latent, | |
speaker_embedding, | |
diffusion_conditioning | |
) | |
inference_time = time.time() - t0 | |
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds") | |
metrics_text+=f"Time to generate audio: {round(inference_time*1000)} milliseconds\n" | |
real_time_factor= (time.time() - t0) / out['wav'].shape[-1] * 24000 | |
print(f"Real-time factor (RTF): {real_time_factor}") | |
metrics_text+=f"Real-time factor (RTF): {real_time_factor:.2f}\n" | |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000) | |
""" | |
print("I: Generating new audio in streaming mode...") | |
t0 = time.time() | |
chunks = model.inference_stream( | |
prompt, | |
language, | |
gpt_cond_latent, | |
speaker_embedding | |
) | |
first_chunk = True | |
for i, chunk in enumerate(chunks): | |
if first_chunk: | |
first_chunk_time = time.time() - t0 | |
metrics_text += f"Latency to first audio chunk: {round(first_chunk_time*1000)} milliseconds\n" | |
first_chunk = False | |
wav_chunks.append(chunk) | |
print(f"Received chunk {i} of audio length {chunk.shape[-1]}") | |
inference_time = time.time() - t0 | |
print( | |
f"I: Time to generate audio: {round(inference_time*1000)} milliseconds" | |
) | |
#metrics_text += ( | |
# f"Time to generate audio: {round(inference_time*1000)} milliseconds\n" | |
#) | |
wav = torch.cat(wav_chunks, dim=0) | |
print(wav.shape) | |
real_time_factor = (time.time() - t0) / wav.shape[0] * 24000 | |
print(f"Real-time factor (RTF): {real_time_factor}") | |
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n" | |
torchaudio.save("output.wav", wav.squeeze().unsqueeze(0).cpu(), 24000) | |
except RuntimeError as e: | |
if "device-side assert" in str(e): | |
# cannot do anything on cuda device side error, need tor estart | |
print( | |
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}", | |
flush=True, | |
) | |
gr.Warning("Unhandled Exception encounter, please retry in a minute") | |
print("Cuda device-assert Runtime encountered need restart") | |
if not DEVICE_ASSERT_DETECTED: | |
DEVICE_ASSERT_DETECTED = 1 | |
DEVICE_ASSERT_PROMPT = prompt | |
DEVICE_ASSERT_LANG = language | |
# just before restarting save what caused the issue so we can handle it in future | |
# Uploading Error data only happens for unrecovarable error | |
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S") | |
error_data = [ | |
error_time, | |
prompt, | |
language, | |
audio_file_pth, | |
mic_file_path, | |
use_mic, | |
voice_cleanup, | |
no_lang_auto_detect, | |
agree, | |
] | |
error_data = [str(e) if type(e) != str else e for e in error_data] | |
print(error_data) | |
print(speaker_wav) | |
write_io = StringIO() | |
csv.writer(write_io).writerows([error_data]) | |
csv_upload = write_io.getvalue().encode() | |
filename = error_time + "_" + str(uuid.uuid4()) + ".csv" | |
print("Writing error csv") | |
error_api = HfApi() | |
error_api.upload_file( | |
path_or_fileobj=csv_upload, | |
path_in_repo=filename, | |
repo_id="coqui/xtts-flagged-dataset", | |
repo_type="dataset", | |
) | |
# speaker_wav | |
print("Writing error reference audio") | |
speaker_filename = ( | |
error_time + "_reference_" + str(uuid.uuid4()) + ".wav" | |
) | |
error_api = HfApi() | |
error_api.upload_file( | |
path_or_fileobj=speaker_wav, | |
path_in_repo=speaker_filename, | |
repo_id="coqui/xtts-flagged-dataset", | |
repo_type="dataset", | |
) | |
# HF Space specific.. This error is unrecoverable need to restart space | |
api.restart_space(repo_id=repo_id) | |
else: | |
if "Failed to decode" in str(e): | |
print("Speaker encoding error", str(e)) | |
gr.Warning( | |
"It appears something wrong with reference, did you unmute your microphone?" | |
) | |
else: | |
print("RuntimeError: non device-side assert error:", str(e)) | |
gr.Warning("Something unexpected happened please retry again.") | |
return ( | |
None, | |
None, | |
None, | |
None, | |
) | |
return ( | |
gr.make_waveform( | |
audio="output.wav", | |
), | |
"output.wav", | |
metrics_text, | |
speaker_wav, | |
) | |
else: | |
gr.Warning("Please accept the Terms & Condition!") | |
return ( | |
None, | |
None, | |
None, | |
None, | |
) | |
title = "Coqui🐸 XTTS" | |
description = """ | |
<div> | |
<a style="display:inline-block" href='https://github.com/coqui-ai/TTS'><img src='https://img.shields.io/github/stars/coqui-ai/TTS?style=social' /></a> | |
<a style='display:inline-block' href='https://discord.gg/5eXr5seRrv'><img src='https://discord.com/api/guilds/1037326658807533628/widget.png?style=shield' /></a> | |
<a href="https://huggingface.co/spaces/coqui/xtts?duplicate=true"> | |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
</div> | |
<a href="https://huggingface.co/coqui/XTTS-v2">XTTS</a> is a Voice generation model that lets you clone voices into different languages by using just a quick 6-second audio clip. | |
<br/> | |
XTTS is built on previous research, like Tortoise, with additional architectural innovations and training to make cross-language voice cloning and multilingual speech generation possible. | |
<br/> | |
This is the same model that powers our creator application <a href="https://coqui.ai">Coqui Studio</a> as well as the <a href="https://docs.coqui.ai">Coqui API</a>. In production we apply modifications to make low-latency streaming possible. | |
<br/> | |
Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">🐸TTS</a>, where our open-source inference and training code lives. | |
<br/> | |
<p>For faster inference without waiting in the queue, you should duplicate this space and upgrade to GPU via the settings. | |
<br/> | |
</p> | |
<p>Language Selectors: | |
Arabic: ar, Brazilian Portuguese: pt , Chinese: zh-cn, Czech: cs,<br/> | |
Dutch: nl, English: en, French: fr, Italian: it, Polish: pl,<br/> | |
Russian: ru, Spanish: es, Turkish: tr, Japanese: ja <br/> | |
Korean: ko, Hungarian: hu <br/> | |
</p> | |
<img referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=0d00920c-8cc9-4bf3-90f2-a615797e5f59" /> | |
""" | |
article = """ | |
<div style='margin:20px auto;'> | |
<p>By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml</p> | |
<p>We collect data only for error cases for improvement.</p> | |
</div> | |
""" | |
examples = [ | |
[ | |
"Once when I was six years old I saw a magnificent picture", | |
"en", | |
"examples/female.wav", | |
None, | |
False, | |
False, | |
False, | |
True, | |
], | |
[ | |
"Lorsque j'avais six ans j'ai vu, une fois, une magnifique image", | |
"fr", | |
"examples/male.wav", | |
None, | |
False, | |
False, | |
False, | |
True, | |
], | |
[ | |
"Als ich sechs war, sah ich einmal ein wunderbares Bild", | |
"de", | |
"examples/female.wav", | |
None, | |
False, | |
False, | |
False, | |
True, | |
], | |
[ | |
"Cuando tenía seis años, vi una vez una imagen magnífica", | |
"es", | |
"examples/male.wav", | |
None, | |
False, | |
False, | |
False, | |
True, | |
], | |
[ | |
"Quando eu tinha seis anos eu vi, uma vez, uma imagem magnífica", | |
"pt", | |
"examples/female.wav", | |
None, | |
False, | |
False, | |
False, | |
True, | |
], | |
[ | |
"Kiedy miałem sześć lat, zobaczyłem pewnego razu wspaniały obrazek", | |
"pl", | |
"examples/male.wav", | |
None, | |
False, | |
False, | |
False, | |
True, | |
], | |
[ | |
"Un tempo lontano, quando avevo sei anni, vidi un magnifico disegno", | |
"it", | |
"examples/female.wav", | |
None, | |
False, | |
False, | |
False, | |
True, | |
], | |
[ | |
"Bir zamanlar, altı yaşındayken, muhteşem bir resim gördüm", | |
"tr", | |
"examples/female.wav", | |
None, | |
False, | |
False, | |
False, | |
True, | |
], | |
[ | |
"Когда мне было шесть лет, я увидел однажды удивительную картинку", | |
"ru", | |
"examples/female.wav", | |
None, | |
False, | |
False, | |
False, | |
True, | |
], | |
[ | |
"Toen ik een jaar of zes was, zag ik op een keer een prachtige plaat", | |
"nl", | |
"examples/male.wav", | |
None, | |
False, | |
False, | |
False, | |
True, | |
], | |
[ | |
"Když mi bylo šest let, viděl jsem jednou nádherný obrázek", | |
"cs", | |
"examples/female.wav", | |
None, | |
False, | |
False, | |
False, | |
True, | |
], | |
[ | |
"当我还只有六岁的时候, 看到了一副精彩的插画", | |
"zh-cn", | |
"examples/female.wav", | |
None, | |
False, | |
False, | |
False, | |
True, | |
], | |
[ | |
"かつて 六歳のとき、素晴らしい絵を見ました", | |
"ja", | |
"examples/female.wav", | |
None, | |
False, | |
True, | |
False, | |
True, | |
], | |
[ | |
"한번은 내가 여섯 살이었을 때 멋진 그림을 보았습니다.", | |
"ko", | |
"examples/female.wav", | |
None, | |
False, | |
True, | |
False, | |
True, | |
], | |
[ | |
"Egyszer hat éves koromban láttam egy csodálatos képet", | |
"hu", | |
"examples/male.wav", | |
None, | |
False, | |
True, | |
False, | |
True, | |
], | |
] | |
gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Textbox( | |
label="Text Prompt", | |
info="One or two sentences at a time is better. Up to 200 text characters.", | |
value="Hi there, I'm your new voice clone. Try your best to upload quality audio", | |
), | |
gr.Dropdown( | |
label="Language", | |
info="Select an output language for the synthesised speech", | |
choices=[ | |
"en", | |
"es", | |
"fr", | |
"de", | |
"it", | |
"pt", | |
"pl", | |
"tr", | |
"ru", | |
"nl", | |
"cs", | |
"ar", | |
"zh-cn", | |
"ja", | |
"ko", | |
"hu" | |
], | |
max_choices=1, | |
value="en", | |
), | |
gr.Audio( | |
label="Reference Audio", | |
info="Click on the ✎ button to upload your own target speaker audio", | |
type="filepath", | |
value="examples/female.wav", | |
), | |
gr.Audio( | |
source="microphone", | |
type="filepath", | |
info="Use your microphone to record audio", | |
label="Use Microphone for Reference", | |
), | |
gr.Checkbox( | |
label="Use Microphone", | |
value=False, | |
info="Notice: Microphone input may not work properly under traffic", | |
), | |
gr.Checkbox( | |
label="Cleanup Reference Voice", | |
value=False, | |
info="This check can improve output if your microphone or reference voice is noisy", | |
), | |
gr.Checkbox( | |
label="Do not use language auto-detect", | |
value=False, | |
info="Check to disable language auto-detection", | |
), | |
gr.Checkbox( | |
label="Agree", | |
value=False, | |
info="I agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml", | |
), | |
], | |
outputs=[ | |
gr.Video(label="Waveform Visual"), | |
gr.Audio(label="Synthesised Audio", autoplay=True), | |
gr.Text(label="Metrics"), | |
gr.Audio(label="Reference Audio Used"), | |
], | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
).queue().launch(debug=True, show_api=True) | |