ggoknar
commited on
Commit
·
a38b58d
1
Parent(s):
da4b074
stream voice with combined wav at end, optional direct stream
Browse files
app.py
CHANGED
@@ -5,6 +5,8 @@ import os
|
|
5 |
# By using XTTS you agree to CPML license https://coqui.ai/cpml
|
6 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
7 |
|
|
|
|
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
import torch
|
@@ -32,6 +34,9 @@ from TTS.utils.generic_utils import get_user_data_dir
|
|
32 |
# Could not make play audio next work seemlesly on current Gradio with autoplay so this is a workaround
|
33 |
AUDIO_WAIT_MODIFIER = float(os.environ.get("AUDIO_WAIT_MODIFIER", 1))
|
34 |
|
|
|
|
|
|
|
35 |
# This will trigger downloading model
|
36 |
print("Downloading if not downloaded Coqui XTTS V1")
|
37 |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1")
|
@@ -106,3 +111,452 @@ text_client = InferenceClient(
|
|
106 |
"mistralai/Mistral-7B-Instruct-v0.1",
|
107 |
timeout=WHISPER_TIMEOUT,
|
108 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
# By using XTTS you agree to CPML license https://coqui.ai/cpml
|
6 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
7 |
|
8 |
+
from scipy.io.wavfile import write
|
9 |
+
from pydub import AudioSegment
|
10 |
import gradio as gr
|
11 |
import numpy as np
|
12 |
import torch
|
|
|
34 |
# Could not make play audio next work seemlesly on current Gradio with autoplay so this is a workaround
|
35 |
AUDIO_WAIT_MODIFIER = float(os.environ.get("AUDIO_WAIT_MODIFIER", 1))
|
36 |
|
37 |
+
# if set will try to stream audio while receveng audio chunks, beware that recreating audio each time produces artifacts
|
38 |
+
DIRECT_STREAM = int(os.environ.get("DIRECT_STREAM", 0))
|
39 |
+
|
40 |
# This will trigger downloading model
|
41 |
print("Downloading if not downloaded Coqui XTTS V1")
|
42 |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1")
|
|
|
111 |
"mistralai/Mistral-7B-Instruct-v0.1",
|
112 |
timeout=WHISPER_TIMEOUT,
|
113 |
)
|
114 |
+
|
115 |
+
|
116 |
+
###### COQUI TTS FUNCTIONS ######
|
117 |
+
def get_latents(speaker_wav):
|
118 |
+
# create as function as we can populate here with voice cleanup/filtering
|
119 |
+
(
|
120 |
+
gpt_cond_latent,
|
121 |
+
diffusion_conditioning,
|
122 |
+
speaker_embedding,
|
123 |
+
) = model.get_conditioning_latents(audio_path=speaker_wav)
|
124 |
+
return gpt_cond_latent, diffusion_conditioning, speaker_embedding
|
125 |
+
|
126 |
+
|
127 |
+
def format_prompt(message, history):
|
128 |
+
prompt = (
|
129 |
+
"<s>[INST]"
|
130 |
+
+ system_message
|
131 |
+
+ "[/INST] I understand, I am a Mistral chatbot with speech by Coqui team.</s>"
|
132 |
+
)
|
133 |
+
for user_prompt, bot_response in history:
|
134 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
135 |
+
prompt += f" {bot_response}</s> "
|
136 |
+
prompt += f"[INST] {message} [/INST]"
|
137 |
+
return prompt
|
138 |
+
|
139 |
+
|
140 |
+
def generate(
|
141 |
+
prompt,
|
142 |
+
history,
|
143 |
+
temperature=0.9,
|
144 |
+
max_new_tokens=256,
|
145 |
+
top_p=0.95,
|
146 |
+
repetition_penalty=1.0,
|
147 |
+
):
|
148 |
+
temperature = float(temperature)
|
149 |
+
if temperature < 1e-2:
|
150 |
+
temperature = 1e-2
|
151 |
+
top_p = float(top_p)
|
152 |
+
|
153 |
+
generate_kwargs = dict(
|
154 |
+
temperature=temperature,
|
155 |
+
max_new_tokens=max_new_tokens,
|
156 |
+
top_p=top_p,
|
157 |
+
repetition_penalty=repetition_penalty,
|
158 |
+
do_sample=True,
|
159 |
+
seed=42,
|
160 |
+
)
|
161 |
+
|
162 |
+
formatted_prompt = format_prompt(prompt, history)
|
163 |
+
|
164 |
+
try:
|
165 |
+
stream = text_client.text_generation(
|
166 |
+
formatted_prompt,
|
167 |
+
**generate_kwargs,
|
168 |
+
stream=True,
|
169 |
+
details=True,
|
170 |
+
return_full_text=False,
|
171 |
+
)
|
172 |
+
output = ""
|
173 |
+
for response in stream:
|
174 |
+
output += response.token.text
|
175 |
+
yield output
|
176 |
+
|
177 |
+
except Exception as e:
|
178 |
+
if "Too Many Requests" in str(e):
|
179 |
+
print("ERROR: Too many requests on mistral client")
|
180 |
+
gr.Warning("Unfortunately Mistral is unable to process")
|
181 |
+
output = "Unfortuanately I am not able to process your request now !"
|
182 |
+
else:
|
183 |
+
print("Unhandled Exception: ", str(e))
|
184 |
+
gr.Warning("Unfortunately Mistral is unable to process")
|
185 |
+
output = "I do not know what happened but I could not understand you ."
|
186 |
+
|
187 |
+
return output
|
188 |
+
|
189 |
+
|
190 |
+
def transcribe(wav_path):
|
191 |
+
try:
|
192 |
+
# get first element from whisper_jax and strip it to delete begin and end space
|
193 |
+
return whisper_client.predict(
|
194 |
+
wav_path, # str (filepath or URL to file) in 'inputs' Audio component
|
195 |
+
"transcribe", # str in 'Task' Radio component
|
196 |
+
False, # return_timestamps=False for whisper-jax https://gist.github.com/sanchit-gandhi/781dd7003c5b201bfe16d28634c8d4cf#file-whisper_jax_endpoint-py
|
197 |
+
api_name="/predict",
|
198 |
+
)[0].strip()
|
199 |
+
except:
|
200 |
+
gr.Warning("There was a problem with Whisper endpoint, telling a joke for you.")
|
201 |
+
return "There was a problem with my voice, tell me joke"
|
202 |
+
|
203 |
+
|
204 |
+
# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.
|
205 |
+
|
206 |
+
|
207 |
+
def add_text(history, text):
|
208 |
+
history = [] if history is None else history
|
209 |
+
history = history + [(text, None)]
|
210 |
+
return history, gr.update(value="", interactive=False)
|
211 |
+
|
212 |
+
|
213 |
+
def add_file(history, file):
|
214 |
+
history = [] if history is None else history
|
215 |
+
|
216 |
+
try:
|
217 |
+
text = transcribe(file)
|
218 |
+
print("Transcribed text:", text)
|
219 |
+
except Exception as e:
|
220 |
+
print(str(e))
|
221 |
+
gr.Warning("There was an issue with transcription, please try writing for now")
|
222 |
+
# Apply a null text on error
|
223 |
+
text = "Transcription seems failed, please tell me a joke about chickens"
|
224 |
+
|
225 |
+
history = history + [(text, None)]
|
226 |
+
return history, gr.update(value="", interactive=False)
|
227 |
+
|
228 |
+
|
229 |
+
##NOTE: not using this as it yields a chacter each time while we need to feed history to TTS
|
230 |
+
def bot(history, system_prompt=""):
|
231 |
+
history = [] if history is None else history
|
232 |
+
|
233 |
+
if system_prompt == "":
|
234 |
+
system_prompt = system_message
|
235 |
+
|
236 |
+
history[-1][1] = ""
|
237 |
+
for character in generate(history[-1][0], history[:-1]):
|
238 |
+
history[-1][1] = character
|
239 |
+
yield history
|
240 |
+
|
241 |
+
|
242 |
+
def get_latents(speaker_wav):
|
243 |
+
# Generate speaker embedding and latents for TTS
|
244 |
+
(
|
245 |
+
gpt_cond_latent,
|
246 |
+
diffusion_conditioning,
|
247 |
+
speaker_embedding,
|
248 |
+
) = model.get_conditioning_latents(audio_path=speaker_wav)
|
249 |
+
return gpt_cond_latent, diffusion_conditioning, speaker_embedding
|
250 |
+
|
251 |
+
|
252 |
+
latent_map = {}
|
253 |
+
latent_map["Female_Voice"] = get_latents("examples/female.wav")
|
254 |
+
|
255 |
+
|
256 |
+
def get_voice(prompt, language, latent_tuple, suffix="0"):
|
257 |
+
gpt_cond_latent, diffusion_conditioning, speaker_embedding = latent_tuple
|
258 |
+
# Direct version
|
259 |
+
t0 = time.time()
|
260 |
+
out = model.inference(
|
261 |
+
prompt, language, gpt_cond_latent, speaker_embedding, diffusion_conditioning
|
262 |
+
)
|
263 |
+
inference_time = time.time() - t0
|
264 |
+
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
|
265 |
+
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
|
266 |
+
print(f"Real-time factor (RTF): {real_time_factor}")
|
267 |
+
wav_filename = f"output_{suffix}.wav"
|
268 |
+
torchaudio.save(wav_filename, torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
269 |
+
return wav_filename
|
270 |
+
|
271 |
+
|
272 |
+
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=24000):
|
273 |
+
# This will create a wave header then append the frame input
|
274 |
+
# It should be first on a streaming wav file
|
275 |
+
# Other frames better should not have it (else you will hear some artifacts each chunk start)
|
276 |
+
wav_buf = io.BytesIO()
|
277 |
+
with wave.open(wav_buf, "wb") as vfout:
|
278 |
+
vfout.setnchannels(channels)
|
279 |
+
vfout.setsampwidth(sample_width)
|
280 |
+
vfout.setframerate(sample_rate)
|
281 |
+
vfout.writeframes(frame_input)
|
282 |
+
|
283 |
+
wav_buf.seek(0)
|
284 |
+
return wav_buf.read()
|
285 |
+
|
286 |
+
|
287 |
+
def get_voice_streaming(prompt, language, latent_tuple, suffix="0"):
|
288 |
+
gpt_cond_latent, diffusion_conditioning, speaker_embedding = latent_tuple
|
289 |
+
try:
|
290 |
+
t0 = time.time()
|
291 |
+
chunks = model.inference_stream(
|
292 |
+
prompt,
|
293 |
+
language,
|
294 |
+
gpt_cond_latent,
|
295 |
+
speaker_embedding,
|
296 |
+
)
|
297 |
+
|
298 |
+
first_chunk = True
|
299 |
+
for i, chunk in enumerate(chunks):
|
300 |
+
if first_chunk:
|
301 |
+
first_chunk_time = time.time() - t0
|
302 |
+
metrics_text = f"Latency to first audio chunk: {round(first_chunk_time*1000)} milliseconds\n"
|
303 |
+
first_chunk = False
|
304 |
+
print(f"Received chunk {i} of audio length {chunk.shape[-1]}")
|
305 |
+
|
306 |
+
# In case output is required to be multiple voice files
|
307 |
+
# out_file = f'{char}_{i}.wav'
|
308 |
+
# write(out_file, 24000, chunk.detach().cpu().numpy().squeeze())
|
309 |
+
# audio = AudioSegment.from_file(out_file)
|
310 |
+
# audio.export(out_file, format='wav')
|
311 |
+
# return out_file
|
312 |
+
# directly return chunk as bytes for streaming
|
313 |
+
chunk = chunk.detach().cpu().numpy().squeeze()
|
314 |
+
chunk = (chunk * 32767).astype(np.int16)
|
315 |
+
|
316 |
+
yield chunk.tobytes()
|
317 |
+
|
318 |
+
except RuntimeError as e:
|
319 |
+
if "device-side assert" in str(e):
|
320 |
+
# cannot do anything on cuda device side error, need tor estart
|
321 |
+
print(
|
322 |
+
f"Exit due to: Unrecoverable exception caused by prompt:{sentence}",
|
323 |
+
flush=True,
|
324 |
+
)
|
325 |
+
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
326 |
+
print("Cuda device-assert Runtime encountered need restart")
|
327 |
+
|
328 |
+
# HF Space specific.. This error is unrecoverable need to restart space
|
329 |
+
api.restart_space(repo_id=repo_id)
|
330 |
+
else:
|
331 |
+
print("RuntimeError: non device-side assert error:", str(e))
|
332 |
+
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
333 |
+
return None
|
334 |
+
return None
|
335 |
+
except:
|
336 |
+
return None
|
337 |
+
|
338 |
+
|
339 |
+
def get_sentence(history, system_prompt=""):
|
340 |
+
history = [] if history is None else history
|
341 |
+
|
342 |
+
if system_prompt == "":
|
343 |
+
system_prompt = system_message
|
344 |
+
|
345 |
+
history[-1][1] = ""
|
346 |
+
|
347 |
+
mistral_start = time.time()
|
348 |
+
print("Mistral start")
|
349 |
+
sentence_list = []
|
350 |
+
sentence_hash_list = []
|
351 |
+
|
352 |
+
text_to_generate = ""
|
353 |
+
for character in generate(history[-1][0], history[:-1]):
|
354 |
+
history[-1][1] = character
|
355 |
+
# It is coming word by word
|
356 |
+
|
357 |
+
text_to_generate = nltk.sent_tokenize(history[-1][1].replace("\n", " ").strip())
|
358 |
+
|
359 |
+
if len(text_to_generate) > 1:
|
360 |
+
dif = len(text_to_generate) - len(sentence_list)
|
361 |
+
|
362 |
+
if dif == 1 and len(sentence_list) != 0:
|
363 |
+
continue
|
364 |
+
|
365 |
+
sentence = text_to_generate[len(sentence_list)]
|
366 |
+
# This is expensive replace with hashing!
|
367 |
+
sentence_hash = hash(sentence)
|
368 |
+
|
369 |
+
if sentence_hash not in sentence_hash_list:
|
370 |
+
sentence_hash_list.append(sentence_hash)
|
371 |
+
sentence_list.append(sentence)
|
372 |
+
print("New Sentence: ", sentence)
|
373 |
+
yield (sentence, history)
|
374 |
+
|
375 |
+
# return that final sentence token
|
376 |
+
# TODO need a counter that one may be replica as before
|
377 |
+
last_sentence = nltk.sent_tokenize(history[-1][1].replace("\n", " ").strip())[-1]
|
378 |
+
sentence_hash = hash(last_sentence)
|
379 |
+
if sentence_hash not in sentence_hash_list:
|
380 |
+
sentence_hash_list.append(sentence_hash)
|
381 |
+
sentence_list.append(last_sentence)
|
382 |
+
print("New Sentence: ", last_sentence)
|
383 |
+
|
384 |
+
yield (last_sentence, history)
|
385 |
+
|
386 |
+
|
387 |
+
def generate_speech(history):
|
388 |
+
language = "en"
|
389 |
+
|
390 |
+
wav_bytestream = b""
|
391 |
+
for sentence, history in get_sentence(history):
|
392 |
+
print(sentence)
|
393 |
+
# Sometimes prompt </s> coming on output remove it
|
394 |
+
sentence = sentence.replace("</s>", "")
|
395 |
+
# A fast fix for last chacter, may produce weird sounds if it is with text
|
396 |
+
if sentence[-1] in ["!", "?", ".", ","]:
|
397 |
+
# just add a space
|
398 |
+
sentence = sentence[:-1] + " " + sentence[-1]
|
399 |
+
print("Sentence for speech:", sentence)
|
400 |
+
|
401 |
+
try:
|
402 |
+
# generate speech using precomputed latents
|
403 |
+
# This is not streaming but it will be fast
|
404 |
+
# wav = get_voice(sentence,language, latent_map["Female_Voice"], suffix=len(wav_list))
|
405 |
+
audio_stream = get_voice_streaming(
|
406 |
+
sentence, language, latent_map["Female_Voice"]
|
407 |
+
)
|
408 |
+
wav_chunks = wave_header_chunk()
|
409 |
+
frame_length = 0
|
410 |
+
for chunk in audio_stream:
|
411 |
+
try:
|
412 |
+
wav_bytestream += chunk
|
413 |
+
if DIRECT_STREAM:
|
414 |
+
yield (
|
415 |
+
gr.Audio.update(
|
416 |
+
value=wave_header_chunk() + chunk, autoplay=True
|
417 |
+
),
|
418 |
+
history,
|
419 |
+
)
|
420 |
+
wait_time = len(chunk) / 2 / 24000
|
421 |
+
wait_time = AUDIO_WAIT_MODIFIER * wait_time
|
422 |
+
print("Sleeping till chunk end")
|
423 |
+
time.sleep(wait_time)
|
424 |
+
|
425 |
+
else:
|
426 |
+
wav_chunks += chunk
|
427 |
+
frame_length += len(chunk)
|
428 |
+
except:
|
429 |
+
# hack to continue on playing. sometimes last chunk is empty , will be fixed on next TTS
|
430 |
+
continue
|
431 |
+
|
432 |
+
if not DIRECT_STREAM:
|
433 |
+
yield (gr.Audio.update(value=wav_chunks, autoplay=True), history)
|
434 |
+
# Streaming wait time calculation
|
435 |
+
# audio_length = frame_length / sample_width/ frame_rate
|
436 |
+
wait_time = frame_length / 2 / 24000
|
437 |
+
|
438 |
+
# for non streaming
|
439 |
+
# wait_time= librosa.get_duration(path=wav)
|
440 |
+
|
441 |
+
wait_time = AUDIO_WAIT_MODIFIER * wait_time
|
442 |
+
print("Sleeping till audio end")
|
443 |
+
time.sleep(wait_time)
|
444 |
+
|
445 |
+
except RuntimeError as e:
|
446 |
+
if "device-side assert" in str(e):
|
447 |
+
# cannot do anything on cuda device side error, need tor estart
|
448 |
+
print(
|
449 |
+
f"Exit due to: Unrecoverable exception caused by prompt:{sentence}",
|
450 |
+
flush=True,
|
451 |
+
)
|
452 |
+
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
453 |
+
print("Cuda device-assert Runtime encountered need restart")
|
454 |
+
|
455 |
+
# HF Space specific.. This error is unrecoverable need to restart space
|
456 |
+
api.restart_space(repo_id=repo_id)
|
457 |
+
else:
|
458 |
+
print("RuntimeError: non device-side assert error:", str(e))
|
459 |
+
raise e
|
460 |
+
|
461 |
+
# Spoken on autoplay everysencen now produce a concataned one at the one
|
462 |
+
# requires pip install ffmpeg-python
|
463 |
+
|
464 |
+
# files_to_concat= [ffmpeg.input(w) for w in wav_list]
|
465 |
+
# combined_file_name="combined.wav"
|
466 |
+
# ffmpeg.concat(*files_to_concat,v=0, a=1).output(combined_file_name).run(overwrite_output=True)
|
467 |
+
# final_audio.update(value=combined_file_name, visible=True)
|
468 |
+
# yield (combined_file_name, history
|
469 |
+
|
470 |
+
wav_bytestream = wave_header_chunk() + wav_bytestream
|
471 |
+
time.sleep(0.3)
|
472 |
+
yield (gr.Audio.update(value=None, autoplay=False), history)
|
473 |
+
yield (gr.Audio.update(value=wav_bytestream, autoplay=False), history)
|
474 |
+
|
475 |
+
|
476 |
+
css = """
|
477 |
+
.bot .chatbot p {
|
478 |
+
overflow: hidden; /* Ensures the content is not revealed until the animation */
|
479 |
+
//border-right: .15em solid orange; /* The typwriter cursor */
|
480 |
+
white-space: nowrap; /* Keeps the content on a single line */
|
481 |
+
margin: 0 auto; /* Gives that scrolling effect as the typing happens */
|
482 |
+
letter-spacing: .15em; /* Adjust as needed */
|
483 |
+
animation:
|
484 |
+
typing 3.5s steps(40, end);
|
485 |
+
blink-caret .75s step-end infinite;
|
486 |
+
}
|
487 |
+
|
488 |
+
/* The typing effect */
|
489 |
+
@keyframes typing {
|
490 |
+
from { width: 0 }
|
491 |
+
to { width: 100% }
|
492 |
+
}
|
493 |
+
|
494 |
+
/* The typewriter cursor effect */
|
495 |
+
@keyframes blink-caret {
|
496 |
+
from, to { border-color: transparent }
|
497 |
+
50% { border-color: orange; }
|
498 |
+
}
|
499 |
+
"""
|
500 |
+
|
501 |
+
with gr.Blocks(title=title) as demo:
|
502 |
+
gr.Markdown(DESCRIPTION)
|
503 |
+
|
504 |
+
chatbot = gr.Chatbot(
|
505 |
+
[],
|
506 |
+
elem_id="chatbot",
|
507 |
+
avatar_images=("examples/lama.jpeg", "examples/lama2.jpeg"),
|
508 |
+
bubble_full_width=False,
|
509 |
+
)
|
510 |
+
|
511 |
+
with gr.Row():
|
512 |
+
txt = gr.Textbox(
|
513 |
+
scale=3,
|
514 |
+
show_label=False,
|
515 |
+
placeholder="Enter text and press enter, or speak to your microphone",
|
516 |
+
container=False,
|
517 |
+
)
|
518 |
+
txt_btn = gr.Button(value="Submit text", scale=1)
|
519 |
+
btn = gr.Audio(source="microphone", type="filepath", scale=4)
|
520 |
+
|
521 |
+
with gr.Row():
|
522 |
+
audio = gr.Audio(
|
523 |
+
label="Generated audio response",
|
524 |
+
streaming=False,
|
525 |
+
autoplay=False,
|
526 |
+
interactive=True,
|
527 |
+
show_label=True,
|
528 |
+
)
|
529 |
+
# TODO add a second audio that plays whole sentences (for mobile especially)
|
530 |
+
# final_audio = gr.Audio(label="Final audio response", streaming=False, autoplay=False, interactive=False,show_label=True, visible=False)
|
531 |
+
|
532 |
+
clear_btn = gr.ClearButton([chatbot, audio])
|
533 |
+
|
534 |
+
txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
|
535 |
+
generate_speech, chatbot, [audio, chatbot]
|
536 |
+
)
|
537 |
+
|
538 |
+
txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
|
539 |
+
|
540 |
+
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
|
541 |
+
generate_speech, chatbot, [audio, chatbot]
|
542 |
+
)
|
543 |
+
|
544 |
+
txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
|
545 |
+
|
546 |
+
file_msg = btn.stop_recording(
|
547 |
+
add_file, [chatbot, btn], [chatbot, txt], queue=False
|
548 |
+
).then(generate_speech, chatbot, [audio, chatbot])
|
549 |
+
|
550 |
+
gr.Markdown(
|
551 |
+
"""
|
552 |
+
This Space demonstrates how to speak to a chatbot, based solely on open-source models.
|
553 |
+
It relies on 3 models:
|
554 |
+
1. [Whisper-large-v2](https://huggingface.co/spaces/sanchit-gandhi/whisper-jax) as an ASR model, to transcribe recorded audio to text. It is called through a [gradio client](https://www.gradio.app/docs/client).
|
555 |
+
2. [Mistral-7b-instruct](https://huggingface.co/spaces/osanseviero/mistral-super-fast) as the chat model, the actual chat model. It is called from [huggingface_hub](https://huggingface.co/docs/huggingface_hub/guides/inference).
|
556 |
+
3. [Coqui's XTTS](https://huggingface.co/spaces/coqui/xtts) as a TTS model, to generate the chatbot answers. This time, the model is hosted locally.
|
557 |
+
|
558 |
+
Note:
|
559 |
+
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml"""
|
560 |
+
)
|
561 |
+
demo.queue()
|
562 |
+
demo.launch(debug=True)
|