gorkemgoknar
commited on
Commit
•
8ef0678
1
Parent(s):
51c83e1
add yi back
Browse files
app.py
CHANGED
@@ -95,8 +95,7 @@ repo_id = "coqui/voice-chat-with-zephyr"
|
|
95 |
|
96 |
default_system_message = f"""
|
97 |
You are ##LLM_MODEL###, a large language model trained ##LLM_MODEL_PROVIDER###, architecture of you is decoder-based LM. Your voice backend or text to speech TTS backend is provided via Coqui technology. You are right now served on Huggingface spaces.
|
98 |
-
|
99 |
-
You cannot access the internet, but you have vast knowledge.
|
100 |
Current date: CURRENT_DATE .
|
101 |
"""
|
102 |
|
@@ -130,8 +129,6 @@ pirate_system_message = f"You as {character_name}. {character_scenario} Print ou
|
|
130 |
ROLE_PROMPTS["AI Beard The Pirate"]= pirate_system_message
|
131 |
##"You are an AI assistant with Zephyr model by Mistral and Hugging Face and speech from Coqui XTTS . User will you give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps, your answers should be clear and short sentences"
|
132 |
|
133 |
-
|
134 |
-
|
135 |
### WILL USE LOCAL MISTRAL OR ZEPHYR OR YI
|
136 |
### While zephyr and yi will use half GPU to fit all into 16GB, XTTS will use at most 5GB VRAM
|
137 |
|
@@ -149,8 +146,8 @@ zephyr_model_path="./zephyr-7b-beta.Q5_K_M.gguf"
|
|
149 |
|
150 |
#print("Downloading Yi-6B")
|
151 |
#Yi-6B
|
152 |
-
|
153 |
-
|
154 |
|
155 |
|
156 |
from llama_cpp import Llama
|
@@ -170,8 +167,8 @@ llm_mistral = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1")
|
|
170 |
print("Running LLM Zephyr")
|
171 |
llm_zephyr = Llama(model_path=zephyr_model_path,n_gpu_layers=GPU_LAYERS,max_new_tokens=256, context_window=4096, n_ctx=4096,n_batch=128,verbose=LLAMA_VERBOSE)
|
172 |
|
173 |
-
|
174 |
-
|
175 |
|
176 |
|
177 |
# Mistral formatter
|
@@ -257,12 +254,15 @@ def generate_local(
|
|
257 |
llm_model = "Yi"
|
258 |
llm = llm_yi
|
259 |
max_tokens= round(max_tokens/2)
|
|
|
|
|
|
|
260 |
else:
|
261 |
llm_provider= "Mistral"
|
262 |
llm_model = "Mistral"
|
263 |
llm = llm_mistral
|
264 |
-
|
265 |
-
|
266 |
|
267 |
if "yi" in llm_model.lower():
|
268 |
formatted_prompt = format_prompt_yi(prompt, history,system_message=sys_message,system_understand_message=sys_system_understand_message)
|
@@ -736,7 +736,7 @@ EXAMPLES = [
|
|
736 |
[[],"AI Assistant","What is 42?"],
|
737 |
[[],"AI Assistant","Speak in French, tell me how are you doing?"],
|
738 |
[[],"AI Assistant","Antworten Sie mir von nun an auf Deutsch"],
|
739 |
-
[[],"AI Assistant","
|
740 |
[[],"AI Beard The Pirate","Who are you?"],
|
741 |
[[],"AI Beard The Pirate","Speak in Chinese, 你认识一个叫路飞的海贼吗"],
|
742 |
[[],"AI Beard The Pirate","Speak in Japanese, ルフィという海賊を知っていますか?"],
|
@@ -744,7 +744,7 @@ EXAMPLES = [
|
|
744 |
|
745 |
]
|
746 |
|
747 |
-
MODELS = ["Mistral 7B Instruct","Zephyr 7B Beta"]
|
748 |
|
749 |
OTHER_HTML=f"""<div>
|
750 |
<a style="display:inline-block" href='https://github.com/coqui-ai/TTS'><img src='https://img.shields.io/github/stars/coqui-ai/TTS?style=social' /></a>
|
@@ -851,6 +851,7 @@ It relies on following models :
|
|
851 |
Speech to Text : [Whisper-large-v2](https://sanchit-gandhi-whisper-large-v2.hf.space/) as an ASR model, to transcribe recorded audio to text. It is called through a [gradio client](https://www.gradio.app/docs/client).
|
852 |
LLM Mistral : [Mistral-7b-instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) as the chat model.
|
853 |
LLM Zephyr : [Zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) as the chat model. GGUF Q5_K_M quantized version used locally via llama_cpp from [huggingface.co/TheBloke](https://huggingface.co/TheBloke/zephyr-7B-beta-GGUF).
|
|
|
854 |
Text to Speech : [Coqui's XTTS V2](https://huggingface.co/spaces/coqui/xtts) as a Multilingual TTS model, to generate the chatbot answers. This time, the model is hosted locally.
|
855 |
|
856 |
Note:
|
|
|
95 |
|
96 |
default_system_message = f"""
|
97 |
You are ##LLM_MODEL###, a large language model trained ##LLM_MODEL_PROVIDER###, architecture of you is decoder-based LM. Your voice backend or text to speech TTS backend is provided via Coqui technology. You are right now served on Huggingface spaces.
|
98 |
+
Don't repeat. Answer short, only few words, as if in a talk. You cannot access the internet, but you have vast knowledge.
|
|
|
99 |
Current date: CURRENT_DATE .
|
100 |
"""
|
101 |
|
|
|
129 |
ROLE_PROMPTS["AI Beard The Pirate"]= pirate_system_message
|
130 |
##"You are an AI assistant with Zephyr model by Mistral and Hugging Face and speech from Coqui XTTS . User will you give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps, your answers should be clear and short sentences"
|
131 |
|
|
|
|
|
132 |
### WILL USE LOCAL MISTRAL OR ZEPHYR OR YI
|
133 |
### While zephyr and yi will use half GPU to fit all into 16GB, XTTS will use at most 5GB VRAM
|
134 |
|
|
|
146 |
|
147 |
#print("Downloading Yi-6B")
|
148 |
#Yi-6B
|
149 |
+
hf_hub_download(repo_id="TheBloke/Yi-6B-GGUF", local_dir=".", filename="yi-6b.Q5_K_M.gguf")
|
150 |
+
yi_model_path="./yi-6b.Q5_K_M.gguf"
|
151 |
|
152 |
|
153 |
from llama_cpp import Llama
|
|
|
167 |
print("Running LLM Zephyr")
|
168 |
llm_zephyr = Llama(model_path=zephyr_model_path,n_gpu_layers=GPU_LAYERS,max_new_tokens=256, context_window=4096, n_ctx=4096,n_batch=128,verbose=LLAMA_VERBOSE)
|
169 |
|
170 |
+
print("Running Yi LLM")
|
171 |
+
llm_yi = Llama(model_path=yi_model_path,n_gpu_layers=GPU_LAYERS,max_new_tokens=256, context_window=4096, n_ctx=4096,n_batch=128,verbose=LLAMA_VERBOSE,model_type="mistral")
|
172 |
|
173 |
|
174 |
# Mistral formatter
|
|
|
254 |
llm_model = "Yi"
|
255 |
llm = llm_yi
|
256 |
max_tokens= round(max_tokens/2)
|
257 |
+
sys_message= system_message.replace("##LLM_MODEL###",llm_model).replace("##LLM_MODEL_PROVIDER###",llm_provider)
|
258 |
+
sys_system_understand_message = system_understand_message.replace("##LLM_MODEL###",llm_model).replace("##LLM_MODEL_PROVIDER###",llm_provider)
|
259 |
+
|
260 |
else:
|
261 |
llm_provider= "Mistral"
|
262 |
llm_model = "Mistral"
|
263 |
llm = llm_mistral
|
264 |
+
sys_message= system_message.replace("##LLM_MODEL###",llm_model).replace("##LLM_MODEL_PROVIDER###",llm_provider)
|
265 |
+
sys_system_understand_message = system_understand_message.replace("##LLM_MODEL###",llm_model).replace("##LLM_MODEL_PROVIDER###",llm_provider)
|
266 |
|
267 |
if "yi" in llm_model.lower():
|
268 |
formatted_prompt = format_prompt_yi(prompt, history,system_message=sys_message,system_understand_message=sys_system_understand_message)
|
|
|
736 |
[[],"AI Assistant","What is 42?"],
|
737 |
[[],"AI Assistant","Speak in French, tell me how are you doing?"],
|
738 |
[[],"AI Assistant","Antworten Sie mir von nun an auf Deutsch"],
|
739 |
+
[[],"AI Assistant","给我讲个故事 的英文],
|
740 |
[[],"AI Beard The Pirate","Who are you?"],
|
741 |
[[],"AI Beard The Pirate","Speak in Chinese, 你认识一个叫路飞的海贼吗"],
|
742 |
[[],"AI Beard The Pirate","Speak in Japanese, ルフィという海賊を知っていますか?"],
|
|
|
744 |
|
745 |
]
|
746 |
|
747 |
+
MODELS = ["Mistral 7B Instruct","Zephyr 7B Beta", "Yi 6B"]
|
748 |
|
749 |
OTHER_HTML=f"""<div>
|
750 |
<a style="display:inline-block" href='https://github.com/coqui-ai/TTS'><img src='https://img.shields.io/github/stars/coqui-ai/TTS?style=social' /></a>
|
|
|
851 |
Speech to Text : [Whisper-large-v2](https://sanchit-gandhi-whisper-large-v2.hf.space/) as an ASR model, to transcribe recorded audio to text. It is called through a [gradio client](https://www.gradio.app/docs/client).
|
852 |
LLM Mistral : [Mistral-7b-instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) as the chat model.
|
853 |
LLM Zephyr : [Zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) as the chat model. GGUF Q5_K_M quantized version used locally via llama_cpp from [huggingface.co/TheBloke](https://huggingface.co/TheBloke/zephyr-7B-beta-GGUF).
|
854 |
+
LLM Yi : [Yi-6B](https://huggingface.co/01-ai/Yi-6B) as the chat model. GGUF Q5_K_M quantized version used locally via llama_cpp from [huggingface.co/TheBloke](https://huggingface.co/TheBloke/Yi-6B-GGUF).
|
855 |
Text to Speech : [Coqui's XTTS V2](https://huggingface.co/spaces/coqui/xtts) as a Multilingual TTS model, to generate the chatbot answers. This time, the model is hosted locally.
|
856 |
|
857 |
Note:
|