Spaces:
Runtime error
Runtime error
""" CBAM (sort-of) Attention | |
Experimental impl of CBAM: Convolutional Block Attention Module: https://arxiv.org/abs/1807.06521 | |
WARNING: Results with these attention layers have been mixed. They can significantly reduce performance on | |
some tasks, especially fine-grained it seems. I may end up removing this impl. | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import torch | |
from torch import nn as nn | |
import torch.nn.functional as F | |
from .conv_bn_act import ConvBnAct | |
from .create_act import create_act_layer, get_act_layer | |
from .helpers import make_divisible | |
class ChannelAttn(nn.Module): | |
""" Original CBAM channel attention module, currently avg + max pool variant only. | |
""" | |
def __init__( | |
self, channels, rd_ratio=1./16, rd_channels=None, rd_divisor=1, | |
act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False): | |
super(ChannelAttn, self).__init__() | |
if not rd_channels: | |
rd_channels = make_divisible(channels * rd_ratio, rd_divisor, round_limit=0.) | |
self.fc1 = nn.Conv2d(channels, rd_channels, 1, bias=mlp_bias) | |
self.act = act_layer(inplace=True) | |
self.fc2 = nn.Conv2d(rd_channels, channels, 1, bias=mlp_bias) | |
self.gate = create_act_layer(gate_layer) | |
def forward(self, x): | |
x_avg = self.fc2(self.act(self.fc1(x.mean((2, 3), keepdim=True)))) | |
x_max = self.fc2(self.act(self.fc1(x.amax((2, 3), keepdim=True)))) | |
return x * self.gate(x_avg + x_max) | |
class LightChannelAttn(ChannelAttn): | |
"""An experimental 'lightweight' that sums avg + max pool first | |
""" | |
def __init__( | |
self, channels, rd_ratio=1./16, rd_channels=None, rd_divisor=1, | |
act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False): | |
super(LightChannelAttn, self).__init__( | |
channels, rd_ratio, rd_channels, rd_divisor, act_layer, gate_layer, mlp_bias) | |
def forward(self, x): | |
x_pool = 0.5 * x.mean((2, 3), keepdim=True) + 0.5 * x.amax((2, 3), keepdim=True) | |
x_attn = self.fc2(self.act(self.fc1(x_pool))) | |
return x * F.sigmoid(x_attn) | |
class SpatialAttn(nn.Module): | |
""" Original CBAM spatial attention module | |
""" | |
def __init__(self, kernel_size=7, gate_layer='sigmoid'): | |
super(SpatialAttn, self).__init__() | |
self.conv = ConvBnAct(2, 1, kernel_size, act_layer=None) | |
self.gate = create_act_layer(gate_layer) | |
def forward(self, x): | |
x_attn = torch.cat([x.mean(dim=1, keepdim=True), x.amax(dim=1, keepdim=True)], dim=1) | |
x_attn = self.conv(x_attn) | |
return x * self.gate(x_attn) | |
class LightSpatialAttn(nn.Module): | |
"""An experimental 'lightweight' variant that sums avg_pool and max_pool results. | |
""" | |
def __init__(self, kernel_size=7, gate_layer='sigmoid'): | |
super(LightSpatialAttn, self).__init__() | |
self.conv = ConvBnAct(1, 1, kernel_size, act_layer=None) | |
self.gate = create_act_layer(gate_layer) | |
def forward(self, x): | |
x_attn = 0.5 * x.mean(dim=1, keepdim=True) + 0.5 * x.amax(dim=1, keepdim=True) | |
x_attn = self.conv(x_attn) | |
return x * self.gate(x_attn) | |
class CbamModule(nn.Module): | |
def __init__( | |
self, channels, rd_ratio=1./16, rd_channels=None, rd_divisor=1, | |
spatial_kernel_size=7, act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False): | |
super(CbamModule, self).__init__() | |
self.channel = ChannelAttn( | |
channels, rd_ratio=rd_ratio, rd_channels=rd_channels, | |
rd_divisor=rd_divisor, act_layer=act_layer, gate_layer=gate_layer, mlp_bias=mlp_bias) | |
self.spatial = SpatialAttn(spatial_kernel_size, gate_layer=gate_layer) | |
def forward(self, x): | |
x = self.channel(x) | |
x = self.spatial(x) | |
return x | |
class LightCbamModule(nn.Module): | |
def __init__( | |
self, channels, rd_ratio=1./16, rd_channels=None, rd_divisor=1, | |
spatial_kernel_size=7, act_layer=nn.ReLU, gate_layer='sigmoid', mlp_bias=False): | |
super(LightCbamModule, self).__init__() | |
self.channel = LightChannelAttn( | |
channels, rd_ratio=rd_ratio, rd_channels=rd_channels, | |
rd_divisor=rd_divisor, act_layer=act_layer, gate_layer=gate_layer, mlp_bias=mlp_bias) | |
self.spatial = LightSpatialAttn(spatial_kernel_size) | |
def forward(self, x): | |
x = self.channel(x) | |
x = self.spatial(x) | |
return x | |