Spaces:
Runtime error
Runtime error
"""Pytorch impl of Gluon Xception | |
This is a port of the Gluon Xception code and weights, itself ported from a PyTorch DeepLab impl. | |
Gluon model: (https://gluon-cv.mxnet.io/_modules/gluoncv/model_zoo/xception.html) | |
Original PyTorch DeepLab impl: https://github.com/jfzhang95/pytorch-deeplab-xception | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
from collections import OrderedDict | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .helpers import build_model_with_cfg | |
from .layers import create_classifier, get_padding | |
from .registry import register_model | |
__all__ = ['Xception65'] | |
default_cfgs = { | |
'gluon_xception65': { | |
'url': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_xception-7015a15c.pth', | |
'input_size': (3, 299, 299), | |
'crop_pct': 0.903, | |
'pool_size': (10, 10), | |
'interpolation': 'bicubic', | |
'mean': IMAGENET_DEFAULT_MEAN, | |
'std': IMAGENET_DEFAULT_STD, | |
'num_classes': 1000, | |
'first_conv': 'conv1', | |
'classifier': 'fc' | |
# The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299 | |
}, | |
} | |
""" PADDING NOTES | |
The original PyTorch and Gluon impl of these models dutifully reproduced the | |
aligned padding added to Tensorflow models for Deeplab. This padding was compensating | |
for Tensorflow 'SAME' padding. PyTorch symmetric padding behaves the way we'd want it to. | |
""" | |
class SeparableConv2d(nn.Module): | |
def __init__(self, inplanes, planes, kernel_size=3, stride=1, dilation=1, bias=False, norm_layer=None): | |
super(SeparableConv2d, self).__init__() | |
self.kernel_size = kernel_size | |
self.dilation = dilation | |
# depthwise convolution | |
padding = get_padding(kernel_size, stride, dilation) | |
self.conv_dw = nn.Conv2d( | |
inplanes, inplanes, kernel_size, stride=stride, | |
padding=padding, dilation=dilation, groups=inplanes, bias=bias) | |
self.bn = norm_layer(num_features=inplanes) | |
# pointwise convolution | |
self.conv_pw = nn.Conv2d(inplanes, planes, kernel_size=1, bias=bias) | |
def forward(self, x): | |
x = self.conv_dw(x) | |
x = self.bn(x) | |
x = self.conv_pw(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, inplanes, planes, stride=1, dilation=1, start_with_relu=True, norm_layer=None): | |
super(Block, self).__init__() | |
if isinstance(planes, (list, tuple)): | |
assert len(planes) == 3 | |
else: | |
planes = (planes,) * 3 | |
outplanes = planes[-1] | |
if outplanes != inplanes or stride != 1: | |
self.skip = nn.Sequential() | |
self.skip.add_module('conv1', nn.Conv2d( | |
inplanes, outplanes, 1, stride=stride, bias=False)), | |
self.skip.add_module('bn1', norm_layer(num_features=outplanes)) | |
else: | |
self.skip = None | |
rep = OrderedDict() | |
for i in range(3): | |
rep['act%d' % (i + 1)] = nn.ReLU(inplace=True) | |
rep['conv%d' % (i + 1)] = SeparableConv2d( | |
inplanes, planes[i], 3, stride=stride if i == 2 else 1, dilation=dilation, norm_layer=norm_layer) | |
rep['bn%d' % (i + 1)] = norm_layer(planes[i]) | |
inplanes = planes[i] | |
if not start_with_relu: | |
del rep['act1'] | |
else: | |
rep['act1'] = nn.ReLU(inplace=False) | |
self.rep = nn.Sequential(rep) | |
def forward(self, x): | |
skip = x | |
if self.skip is not None: | |
skip = self.skip(skip) | |
x = self.rep(x) + skip | |
return x | |
class Xception65(nn.Module): | |
"""Modified Aligned Xception. | |
NOTE: only the 65 layer version is included here, the 71 layer variant | |
was not correct and had no pretrained weights | |
""" | |
def __init__(self, num_classes=1000, in_chans=3, output_stride=32, norm_layer=nn.BatchNorm2d, | |
drop_rate=0., global_pool='avg'): | |
super(Xception65, self).__init__() | |
self.num_classes = num_classes | |
self.drop_rate = drop_rate | |
if output_stride == 32: | |
entry_block3_stride = 2 | |
exit_block20_stride = 2 | |
middle_dilation = 1 | |
exit_dilation = (1, 1) | |
elif output_stride == 16: | |
entry_block3_stride = 2 | |
exit_block20_stride = 1 | |
middle_dilation = 1 | |
exit_dilation = (1, 2) | |
elif output_stride == 8: | |
entry_block3_stride = 1 | |
exit_block20_stride = 1 | |
middle_dilation = 2 | |
exit_dilation = (2, 4) | |
else: | |
raise NotImplementedError | |
# Entry flow | |
self.conv1 = nn.Conv2d(in_chans, 32, kernel_size=3, stride=2, padding=1, bias=False) | |
self.bn1 = norm_layer(num_features=32) | |
self.act1 = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False) | |
self.bn2 = norm_layer(num_features=64) | |
self.act2 = nn.ReLU(inplace=True) | |
self.block1 = Block(64, 128, stride=2, start_with_relu=False, norm_layer=norm_layer) | |
self.block1_act = nn.ReLU(inplace=True) | |
self.block2 = Block(128, 256, stride=2, start_with_relu=False, norm_layer=norm_layer) | |
self.block3 = Block(256, 728, stride=entry_block3_stride, norm_layer=norm_layer) | |
# Middle flow | |
self.mid = nn.Sequential(OrderedDict([('block%d' % i, Block( | |
728, 728, stride=1, dilation=middle_dilation, norm_layer=norm_layer)) for i in range(4, 20)])) | |
# Exit flow | |
self.block20 = Block( | |
728, (728, 1024, 1024), stride=exit_block20_stride, dilation=exit_dilation[0], norm_layer=norm_layer) | |
self.block20_act = nn.ReLU(inplace=True) | |
self.conv3 = SeparableConv2d(1024, 1536, 3, stride=1, dilation=exit_dilation[1], norm_layer=norm_layer) | |
self.bn3 = norm_layer(num_features=1536) | |
self.act3 = nn.ReLU(inplace=True) | |
self.conv4 = SeparableConv2d(1536, 1536, 3, stride=1, dilation=exit_dilation[1], norm_layer=norm_layer) | |
self.bn4 = norm_layer(num_features=1536) | |
self.act4 = nn.ReLU(inplace=True) | |
self.num_features = 2048 | |
self.conv5 = SeparableConv2d( | |
1536, self.num_features, 3, stride=1, dilation=exit_dilation[1], norm_layer=norm_layer) | |
self.bn5 = norm_layer(num_features=self.num_features) | |
self.act5 = nn.ReLU(inplace=True) | |
self.feature_info = [ | |
dict(num_chs=64, reduction=2, module='act2'), | |
dict(num_chs=128, reduction=4, module='block1_act'), | |
dict(num_chs=256, reduction=8, module='block3.rep.act1'), | |
dict(num_chs=728, reduction=16, module='block20.rep.act1'), | |
dict(num_chs=2048, reduction=32, module='act5'), | |
] | |
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) | |
def get_classifier(self): | |
return self.fc | |
def reset_classifier(self, num_classes, global_pool='avg'): | |
self.num_classes = num_classes | |
self.global_pool, self.fc = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) | |
def forward_features(self, x): | |
# Entry flow | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
x = self.act2(x) | |
x = self.block1(x) | |
x = self.block1_act(x) | |
# c1 = x | |
x = self.block2(x) | |
# c2 = x | |
x = self.block3(x) | |
# Middle flow | |
x = self.mid(x) | |
# c3 = x | |
# Exit flow | |
x = self.block20(x) | |
x = self.block20_act(x) | |
x = self.conv3(x) | |
x = self.bn3(x) | |
x = self.act3(x) | |
x = self.conv4(x) | |
x = self.bn4(x) | |
x = self.act4(x) | |
x = self.conv5(x) | |
x = self.bn5(x) | |
x = self.act5(x) | |
return x | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.global_pool(x) | |
if self.drop_rate: | |
F.dropout(x, self.drop_rate, training=self.training) | |
x = self.fc(x) | |
return x | |
def _create_gluon_xception(variant, pretrained=False, **kwargs): | |
return build_model_with_cfg( | |
Xception65, variant, pretrained, | |
default_cfg=default_cfgs[variant], | |
feature_cfg=dict(feature_cls='hook'), | |
**kwargs) | |
def gluon_xception65(pretrained=False, **kwargs): | |
""" Modified Aligned Xception-65 | |
""" | |
return _create_gluon_xception('gluon_xception65', pretrained, **kwargs) | |