Spaces:
Runtime error
Runtime error
""" EfficientNet, MobileNetV3, etc Blocks | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from .layers import create_conv2d, drop_path, make_divisible, create_act_layer | |
from .layers.activations import sigmoid | |
__all__ = [ | |
'SqueezeExcite', 'ConvBnAct', 'DepthwiseSeparableConv', 'InvertedResidual', 'CondConvResidual', 'EdgeResidual'] | |
class SqueezeExcite(nn.Module): | |
""" Squeeze-and-Excitation w/ specific features for EfficientNet/MobileNet family | |
Args: | |
in_chs (int): input channels to layer | |
rd_ratio (float): ratio of squeeze reduction | |
act_layer (nn.Module): activation layer of containing block | |
gate_layer (Callable): attention gate function | |
force_act_layer (nn.Module): override block's activation fn if this is set/bound | |
rd_round_fn (Callable): specify a fn to calculate rounding of reduced chs | |
""" | |
def __init__( | |
self, in_chs, rd_ratio=0.25, rd_channels=None, act_layer=nn.ReLU, | |
gate_layer=nn.Sigmoid, force_act_layer=None, rd_round_fn=None): | |
super(SqueezeExcite, self).__init__() | |
if rd_channels is None: | |
rd_round_fn = rd_round_fn or round | |
rd_channels = rd_round_fn(in_chs * rd_ratio) | |
act_layer = force_act_layer or act_layer | |
self.conv_reduce = nn.Conv2d(in_chs, rd_channels, 1, bias=True) | |
self.act1 = create_act_layer(act_layer, inplace=True) | |
self.conv_expand = nn.Conv2d(rd_channels, in_chs, 1, bias=True) | |
self.gate = create_act_layer(gate_layer) | |
def forward(self, x): | |
x_se = x.mean((2, 3), keepdim=True) | |
x_se = self.conv_reduce(x_se) | |
x_se = self.act1(x_se) | |
x_se = self.conv_expand(x_se) | |
return x * self.gate(x_se) | |
class ConvBnAct(nn.Module): | |
""" Conv + Norm Layer + Activation w/ optional skip connection | |
""" | |
def __init__( | |
self, in_chs, out_chs, kernel_size, stride=1, dilation=1, pad_type='', | |
skip=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, drop_path_rate=0.): | |
super(ConvBnAct, self).__init__() | |
self.has_residual = skip and stride == 1 and in_chs == out_chs | |
self.drop_path_rate = drop_path_rate | |
self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, padding=pad_type) | |
self.bn1 = norm_layer(out_chs) | |
self.act1 = act_layer(inplace=True) | |
def feature_info(self, location): | |
if location == 'expansion': # output of conv after act, same as block coutput | |
info = dict(module='act1', hook_type='forward', num_chs=self.conv.out_channels) | |
else: # location == 'bottleneck', block output | |
info = dict(module='', hook_type='', num_chs=self.conv.out_channels) | |
return info | |
def forward(self, x): | |
shortcut = x | |
x = self.conv(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
if self.has_residual: | |
if self.drop_path_rate > 0.: | |
x = drop_path(x, self.drop_path_rate, self.training) | |
x += shortcut | |
return x | |
class DepthwiseSeparableConv(nn.Module): | |
""" DepthwiseSeparable block | |
Used for DS convs in MobileNet-V1 and in the place of IR blocks that have no expansion | |
(factor of 1.0). This is an alternative to having a IR with an optional first pw conv. | |
""" | |
def __init__( | |
self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='', | |
noskip=False, pw_kernel_size=1, pw_act=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, | |
se_layer=None, drop_path_rate=0.): | |
super(DepthwiseSeparableConv, self).__init__() | |
self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip | |
self.has_pw_act = pw_act # activation after point-wise conv | |
self.drop_path_rate = drop_path_rate | |
self.conv_dw = create_conv2d( | |
in_chs, in_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, depthwise=True) | |
self.bn1 = norm_layer(in_chs) | |
self.act1 = act_layer(inplace=True) | |
# Squeeze-and-excitation | |
self.se = se_layer(in_chs, act_layer=act_layer) if se_layer else nn.Identity() | |
self.conv_pw = create_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type) | |
self.bn2 = norm_layer(out_chs) | |
self.act2 = act_layer(inplace=True) if self.has_pw_act else nn.Identity() | |
def feature_info(self, location): | |
if location == 'expansion': # after SE, input to PW | |
info = dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels) | |
else: # location == 'bottleneck', block output | |
info = dict(module='', hook_type='', num_chs=self.conv_pw.out_channels) | |
return info | |
def forward(self, x): | |
shortcut = x | |
x = self.conv_dw(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
x = self.se(x) | |
x = self.conv_pw(x) | |
x = self.bn2(x) | |
x = self.act2(x) | |
if self.has_residual: | |
if self.drop_path_rate > 0.: | |
x = drop_path(x, self.drop_path_rate, self.training) | |
x += shortcut | |
return x | |
class InvertedResidual(nn.Module): | |
""" Inverted residual block w/ optional SE | |
Originally used in MobileNet-V2 - https://arxiv.org/abs/1801.04381v4, this layer is often | |
referred to as 'MBConv' for (Mobile inverted bottleneck conv) and is also used in | |
* MNasNet - https://arxiv.org/abs/1807.11626 | |
* EfficientNet - https://arxiv.org/abs/1905.11946 | |
* MobileNet-V3 - https://arxiv.org/abs/1905.02244 | |
""" | |
def __init__( | |
self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='', | |
noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, act_layer=nn.ReLU, | |
norm_layer=nn.BatchNorm2d, se_layer=None, conv_kwargs=None, drop_path_rate=0.): | |
super(InvertedResidual, self).__init__() | |
conv_kwargs = conv_kwargs or {} | |
mid_chs = make_divisible(in_chs * exp_ratio) | |
self.has_residual = (in_chs == out_chs and stride == 1) and not noskip | |
self.drop_path_rate = drop_path_rate | |
# Point-wise expansion | |
self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs) | |
self.bn1 = norm_layer(mid_chs) | |
self.act1 = act_layer(inplace=True) | |
# Depth-wise convolution | |
self.conv_dw = create_conv2d( | |
mid_chs, mid_chs, dw_kernel_size, stride=stride, dilation=dilation, | |
padding=pad_type, depthwise=True, **conv_kwargs) | |
self.bn2 = norm_layer(mid_chs) | |
self.act2 = act_layer(inplace=True) | |
# Squeeze-and-excitation | |
self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() | |
# Point-wise linear projection | |
self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs) | |
self.bn3 = norm_layer(out_chs) | |
def feature_info(self, location): | |
if location == 'expansion': # after SE, input to PWL | |
info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) | |
else: # location == 'bottleneck', block output | |
info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels) | |
return info | |
def forward(self, x): | |
shortcut = x | |
# Point-wise expansion | |
x = self.conv_pw(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
# Depth-wise convolution | |
x = self.conv_dw(x) | |
x = self.bn2(x) | |
x = self.act2(x) | |
# Squeeze-and-excitation | |
x = self.se(x) | |
# Point-wise linear projection | |
x = self.conv_pwl(x) | |
x = self.bn3(x) | |
if self.has_residual: | |
if self.drop_path_rate > 0.: | |
x = drop_path(x, self.drop_path_rate, self.training) | |
x += shortcut | |
return x | |
class CondConvResidual(InvertedResidual): | |
""" Inverted residual block w/ CondConv routing""" | |
def __init__( | |
self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='', | |
noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, act_layer=nn.ReLU, | |
norm_layer=nn.BatchNorm2d, se_layer=None, num_experts=0, drop_path_rate=0.): | |
self.num_experts = num_experts | |
conv_kwargs = dict(num_experts=self.num_experts) | |
super(CondConvResidual, self).__init__( | |
in_chs, out_chs, dw_kernel_size=dw_kernel_size, stride=stride, dilation=dilation, pad_type=pad_type, | |
act_layer=act_layer, noskip=noskip, exp_ratio=exp_ratio, exp_kernel_size=exp_kernel_size, | |
pw_kernel_size=pw_kernel_size, se_layer=se_layer, norm_layer=norm_layer, conv_kwargs=conv_kwargs, | |
drop_path_rate=drop_path_rate) | |
self.routing_fn = nn.Linear(in_chs, self.num_experts) | |
def forward(self, x): | |
shortcut = x | |
# CondConv routing | |
pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1) | |
routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs)) | |
# Point-wise expansion | |
x = self.conv_pw(x, routing_weights) | |
x = self.bn1(x) | |
x = self.act1(x) | |
# Depth-wise convolution | |
x = self.conv_dw(x, routing_weights) | |
x = self.bn2(x) | |
x = self.act2(x) | |
# Squeeze-and-excitation | |
x = self.se(x) | |
# Point-wise linear projection | |
x = self.conv_pwl(x, routing_weights) | |
x = self.bn3(x) | |
if self.has_residual: | |
if self.drop_path_rate > 0.: | |
x = drop_path(x, self.drop_path_rate, self.training) | |
x += shortcut | |
return x | |
class EdgeResidual(nn.Module): | |
""" Residual block with expansion convolution followed by pointwise-linear w/ stride | |
Originally introduced in `EfficientNet-EdgeTPU: Creating Accelerator-Optimized Neural Networks with AutoML` | |
- https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html | |
This layer is also called FusedMBConv in the MobileDet, EfficientNet-X, and EfficientNet-V2 papers | |
* MobileDet - https://arxiv.org/abs/2004.14525 | |
* EfficientNet-X - https://arxiv.org/abs/2102.05610 | |
* EfficientNet-V2 - https://arxiv.org/abs/2104.00298 | |
""" | |
def __init__( | |
self, in_chs, out_chs, exp_kernel_size=3, stride=1, dilation=1, pad_type='', | |
force_in_chs=0, noskip=False, exp_ratio=1.0, pw_kernel_size=1, act_layer=nn.ReLU, | |
norm_layer=nn.BatchNorm2d, se_layer=None, drop_path_rate=0.): | |
super(EdgeResidual, self).__init__() | |
if force_in_chs > 0: | |
mid_chs = make_divisible(force_in_chs * exp_ratio) | |
else: | |
mid_chs = make_divisible(in_chs * exp_ratio) | |
has_se = se_layer is not None and se_ratio > 0. | |
self.has_residual = (in_chs == out_chs and stride == 1) and not noskip | |
self.drop_path_rate = drop_path_rate | |
# Expansion convolution | |
self.conv_exp = create_conv2d( | |
in_chs, mid_chs, exp_kernel_size, stride=stride, dilation=dilation, padding=pad_type) | |
self.bn1 = norm_layer(mid_chs) | |
self.act1 = act_layer(inplace=True) | |
# Squeeze-and-excitation | |
self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() | |
# Point-wise linear projection | |
self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type) | |
self.bn2 = norm_layer(out_chs) | |
def feature_info(self, location): | |
if location == 'expansion': # after SE, before PWL | |
info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) | |
else: # location == 'bottleneck', block output | |
info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels) | |
return info | |
def forward(self, x): | |
shortcut = x | |
# Expansion convolution | |
x = self.conv_exp(x) | |
x = self.bn1(x) | |
x = self.act1(x) | |
# Squeeze-and-excitation | |
x = self.se(x) | |
# Point-wise linear projection | |
x = self.conv_pwl(x) | |
x = self.bn2(x) | |
if self.has_residual: | |
if self.drop_path_rate > 0.: | |
x = drop_path(x, self.drop_path_rate, self.training) | |
x += shortcut | |
return x | |