Spaces:
Runtime error
Runtime error
""" | |
CoaT architecture. | |
Paper: Co-Scale Conv-Attentional Image Transformers - https://arxiv.org/abs/2104.06399 | |
Official CoaT code at: https://github.com/mlpc-ucsd/CoaT | |
Modified from timm/models/vision_transformer.py | |
""" | |
from copy import deepcopy | |
from functools import partial | |
from typing import Tuple, List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .helpers import build_model_with_cfg, overlay_external_default_cfg | |
from .layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_ | |
from .registry import register_model | |
__all__ = [ | |
"coat_tiny", | |
"coat_mini", | |
"coat_lite_tiny", | |
"coat_lite_mini", | |
"coat_lite_small" | |
] | |
def _cfg_coat(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'patch_embed1.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
'coat_tiny': _cfg_coat( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-coat-weights/coat_tiny-473c2a20.pth' | |
), | |
'coat_mini': _cfg_coat( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-coat-weights/coat_mini-2c6baf49.pth' | |
), | |
'coat_lite_tiny': _cfg_coat( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-coat-weights/coat_lite_tiny-461b07a7.pth' | |
), | |
'coat_lite_mini': _cfg_coat( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-coat-weights/coat_lite_mini-d7842000.pth' | |
), | |
'coat_lite_small': _cfg_coat( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-coat-weights/coat_lite_small-fea1d5a1.pth' | |
), | |
} | |
class ConvRelPosEnc(nn.Module): | |
""" Convolutional relative position encoding. """ | |
def __init__(self, Ch, h, window): | |
""" | |
Initialization. | |
Ch: Channels per head. | |
h: Number of heads. | |
window: Window size(s) in convolutional relative positional encoding. It can have two forms: | |
1. An integer of window size, which assigns all attention heads with the same window s | |
size in ConvRelPosEnc. | |
2. A dict mapping window size to #attention head splits ( | |
e.g. {window size 1: #attention head split 1, window size 2: #attention head split 2}) | |
It will apply different window size to the attention head splits. | |
""" | |
super().__init__() | |
if isinstance(window, int): | |
# Set the same window size for all attention heads. | |
window = {window: h} | |
self.window = window | |
elif isinstance(window, dict): | |
self.window = window | |
else: | |
raise ValueError() | |
self.conv_list = nn.ModuleList() | |
self.head_splits = [] | |
for cur_window, cur_head_split in window.items(): | |
dilation = 1 | |
# Determine padding size. | |
# Ref: https://discuss.pytorch.org/t/how-to-keep-the-shape-of-input-and-output-same-when-dilation-conv/14338 | |
padding_size = (cur_window + (cur_window - 1) * (dilation - 1)) // 2 | |
cur_conv = nn.Conv2d(cur_head_split*Ch, cur_head_split*Ch, | |
kernel_size=(cur_window, cur_window), | |
padding=(padding_size, padding_size), | |
dilation=(dilation, dilation), | |
groups=cur_head_split*Ch, | |
) | |
self.conv_list.append(cur_conv) | |
self.head_splits.append(cur_head_split) | |
self.channel_splits = [x*Ch for x in self.head_splits] | |
def forward(self, q, v, size: Tuple[int, int]): | |
B, h, N, Ch = q.shape | |
H, W = size | |
assert N == 1 + H * W | |
# Convolutional relative position encoding. | |
q_img = q[:, :, 1:, :] # [B, h, H*W, Ch] | |
v_img = v[:, :, 1:, :] # [B, h, H*W, Ch] | |
v_img = v_img.transpose(-1, -2).reshape(B, h * Ch, H, W) | |
v_img_list = torch.split(v_img, self.channel_splits, dim=1) # Split according to channels | |
conv_v_img_list = [] | |
for i, conv in enumerate(self.conv_list): | |
conv_v_img_list.append(conv(v_img_list[i])) | |
conv_v_img = torch.cat(conv_v_img_list, dim=1) | |
conv_v_img = conv_v_img.reshape(B, h, Ch, H * W).transpose(-1, -2) | |
EV_hat = q_img * conv_v_img | |
EV_hat = F.pad(EV_hat, (0, 0, 1, 0, 0, 0)) # [B, h, N, Ch]. | |
return EV_hat | |
class FactorAtt_ConvRelPosEnc(nn.Module): | |
""" Factorized attention with convolutional relative position encoding class. """ | |
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., shared_crpe=None): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) # Note: attn_drop is actually not used. | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
# Shared convolutional relative position encoding. | |
self.crpe = shared_crpe | |
def forward(self, x, size: Tuple[int, int]): | |
B, N, C = x.shape | |
# Generate Q, K, V. | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # [B, h, N, Ch] | |
# Factorized attention. | |
k_softmax = k.softmax(dim=2) | |
factor_att = k_softmax.transpose(-1, -2) @ v | |
factor_att = q @ factor_att | |
# Convolutional relative position encoding. | |
crpe = self.crpe(q, v, size=size) # [B, h, N, Ch] | |
# Merge and reshape. | |
x = self.scale * factor_att + crpe | |
x = x.transpose(1, 2).reshape(B, N, C) # [B, h, N, Ch] -> [B, N, h, Ch] -> [B, N, C] | |
# Output projection. | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class ConvPosEnc(nn.Module): | |
""" Convolutional Position Encoding. | |
Note: This module is similar to the conditional position encoding in CPVT. | |
""" | |
def __init__(self, dim, k=3): | |
super(ConvPosEnc, self).__init__() | |
self.proj = nn.Conv2d(dim, dim, k, 1, k//2, groups=dim) | |
def forward(self, x, size: Tuple[int, int]): | |
B, N, C = x.shape | |
H, W = size | |
assert N == 1 + H * W | |
# Extract CLS token and image tokens. | |
cls_token, img_tokens = x[:, :1], x[:, 1:] # [B, 1, C], [B, H*W, C] | |
# Depthwise convolution. | |
feat = img_tokens.transpose(1, 2).view(B, C, H, W) | |
x = self.proj(feat) + feat | |
x = x.flatten(2).transpose(1, 2) | |
# Combine with CLS token. | |
x = torch.cat((cls_token, x), dim=1) | |
return x | |
class SerialBlock(nn.Module): | |
""" Serial block class. | |
Note: In this implementation, each serial block only contains a conv-attention and a FFN (MLP) module. """ | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, shared_cpe=None, shared_crpe=None): | |
super().__init__() | |
# Conv-Attention. | |
self.cpe = shared_cpe | |
self.norm1 = norm_layer(dim) | |
self.factoratt_crpe = FactorAtt_ConvRelPosEnc( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, shared_crpe=shared_crpe) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
# MLP. | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x, size: Tuple[int, int]): | |
# Conv-Attention. | |
x = self.cpe(x, size) | |
cur = self.norm1(x) | |
cur = self.factoratt_crpe(cur, size) | |
x = x + self.drop_path(cur) | |
# MLP. | |
cur = self.norm2(x) | |
cur = self.mlp(cur) | |
x = x + self.drop_path(cur) | |
return x | |
class ParallelBlock(nn.Module): | |
""" Parallel block class. """ | |
def __init__(self, dims, num_heads, mlp_ratios=[], qkv_bias=False, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, shared_crpes=None): | |
super().__init__() | |
# Conv-Attention. | |
self.norm12 = norm_layer(dims[1]) | |
self.norm13 = norm_layer(dims[2]) | |
self.norm14 = norm_layer(dims[3]) | |
self.factoratt_crpe2 = FactorAtt_ConvRelPosEnc( | |
dims[1], num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, | |
shared_crpe=shared_crpes[1] | |
) | |
self.factoratt_crpe3 = FactorAtt_ConvRelPosEnc( | |
dims[2], num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, | |
shared_crpe=shared_crpes[2] | |
) | |
self.factoratt_crpe4 = FactorAtt_ConvRelPosEnc( | |
dims[3], num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, | |
shared_crpe=shared_crpes[3] | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
# MLP. | |
self.norm22 = norm_layer(dims[1]) | |
self.norm23 = norm_layer(dims[2]) | |
self.norm24 = norm_layer(dims[3]) | |
# In parallel block, we assume dimensions are the same and share the linear transformation. | |
assert dims[1] == dims[2] == dims[3] | |
assert mlp_ratios[1] == mlp_ratios[2] == mlp_ratios[3] | |
mlp_hidden_dim = int(dims[1] * mlp_ratios[1]) | |
self.mlp2 = self.mlp3 = self.mlp4 = Mlp( | |
in_features=dims[1], hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def upsample(self, x, factor: float, size: Tuple[int, int]): | |
""" Feature map up-sampling. """ | |
return self.interpolate(x, scale_factor=factor, size=size) | |
def downsample(self, x, factor: float, size: Tuple[int, int]): | |
""" Feature map down-sampling. """ | |
return self.interpolate(x, scale_factor=1.0/factor, size=size) | |
def interpolate(self, x, scale_factor: float, size: Tuple[int, int]): | |
""" Feature map interpolation. """ | |
B, N, C = x.shape | |
H, W = size | |
assert N == 1 + H * W | |
cls_token = x[:, :1, :] | |
img_tokens = x[:, 1:, :] | |
img_tokens = img_tokens.transpose(1, 2).reshape(B, C, H, W) | |
img_tokens = F.interpolate( | |
img_tokens, scale_factor=scale_factor, recompute_scale_factor=False, mode='bilinear', align_corners=False) | |
img_tokens = img_tokens.reshape(B, C, -1).transpose(1, 2) | |
out = torch.cat((cls_token, img_tokens), dim=1) | |
return out | |
def forward(self, x1, x2, x3, x4, sizes: List[Tuple[int, int]]): | |
_, S2, S3, S4 = sizes | |
cur2 = self.norm12(x2) | |
cur3 = self.norm13(x3) | |
cur4 = self.norm14(x4) | |
cur2 = self.factoratt_crpe2(cur2, size=S2) | |
cur3 = self.factoratt_crpe3(cur3, size=S3) | |
cur4 = self.factoratt_crpe4(cur4, size=S4) | |
upsample3_2 = self.upsample(cur3, factor=2., size=S3) | |
upsample4_3 = self.upsample(cur4, factor=2., size=S4) | |
upsample4_2 = self.upsample(cur4, factor=4., size=S4) | |
downsample2_3 = self.downsample(cur2, factor=2., size=S2) | |
downsample3_4 = self.downsample(cur3, factor=2., size=S3) | |
downsample2_4 = self.downsample(cur2, factor=4., size=S2) | |
cur2 = cur2 + upsample3_2 + upsample4_2 | |
cur3 = cur3 + upsample4_3 + downsample2_3 | |
cur4 = cur4 + downsample3_4 + downsample2_4 | |
x2 = x2 + self.drop_path(cur2) | |
x3 = x3 + self.drop_path(cur3) | |
x4 = x4 + self.drop_path(cur4) | |
# MLP. | |
cur2 = self.norm22(x2) | |
cur3 = self.norm23(x3) | |
cur4 = self.norm24(x4) | |
cur2 = self.mlp2(cur2) | |
cur3 = self.mlp3(cur3) | |
cur4 = self.mlp4(cur4) | |
x2 = x2 + self.drop_path(cur2) | |
x3 = x3 + self.drop_path(cur3) | |
x4 = x4 + self.drop_path(cur4) | |
return x1, x2, x3, x4 | |
class CoaT(nn.Module): | |
""" CoaT class. """ | |
def __init__( | |
self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=(0, 0, 0, 0), | |
serial_depths=(0, 0, 0, 0), parallel_depth=0, num_heads=0, mlp_ratios=(0, 0, 0, 0), qkv_bias=True, | |
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
return_interm_layers=False, out_features=None, crpe_window=None, **kwargs): | |
super().__init__() | |
crpe_window = crpe_window or {3: 2, 5: 3, 7: 3} | |
self.return_interm_layers = return_interm_layers | |
self.out_features = out_features | |
self.embed_dims = embed_dims | |
self.num_features = embed_dims[-1] | |
self.num_classes = num_classes | |
# Patch embeddings. | |
img_size = to_2tuple(img_size) | |
self.patch_embed1 = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, | |
embed_dim=embed_dims[0], norm_layer=nn.LayerNorm) | |
self.patch_embed2 = PatchEmbed( | |
img_size=[x // 4 for x in img_size], patch_size=2, in_chans=embed_dims[0], | |
embed_dim=embed_dims[1], norm_layer=nn.LayerNorm) | |
self.patch_embed3 = PatchEmbed( | |
img_size=[x // 8 for x in img_size], patch_size=2, in_chans=embed_dims[1], | |
embed_dim=embed_dims[2], norm_layer=nn.LayerNorm) | |
self.patch_embed4 = PatchEmbed( | |
img_size=[x // 16 for x in img_size], patch_size=2, in_chans=embed_dims[2], | |
embed_dim=embed_dims[3], norm_layer=nn.LayerNorm) | |
# Class tokens. | |
self.cls_token1 = nn.Parameter(torch.zeros(1, 1, embed_dims[0])) | |
self.cls_token2 = nn.Parameter(torch.zeros(1, 1, embed_dims[1])) | |
self.cls_token3 = nn.Parameter(torch.zeros(1, 1, embed_dims[2])) | |
self.cls_token4 = nn.Parameter(torch.zeros(1, 1, embed_dims[3])) | |
# Convolutional position encodings. | |
self.cpe1 = ConvPosEnc(dim=embed_dims[0], k=3) | |
self.cpe2 = ConvPosEnc(dim=embed_dims[1], k=3) | |
self.cpe3 = ConvPosEnc(dim=embed_dims[2], k=3) | |
self.cpe4 = ConvPosEnc(dim=embed_dims[3], k=3) | |
# Convolutional relative position encodings. | |
self.crpe1 = ConvRelPosEnc(Ch=embed_dims[0] // num_heads, h=num_heads, window=crpe_window) | |
self.crpe2 = ConvRelPosEnc(Ch=embed_dims[1] // num_heads, h=num_heads, window=crpe_window) | |
self.crpe3 = ConvRelPosEnc(Ch=embed_dims[2] // num_heads, h=num_heads, window=crpe_window) | |
self.crpe4 = ConvRelPosEnc(Ch=embed_dims[3] // num_heads, h=num_heads, window=crpe_window) | |
# Disable stochastic depth. | |
dpr = drop_path_rate | |
assert dpr == 0.0 | |
# Serial blocks 1. | |
self.serial_blocks1 = nn.ModuleList([ | |
SerialBlock( | |
dim=embed_dims[0], num_heads=num_heads, mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, | |
shared_cpe=self.cpe1, shared_crpe=self.crpe1 | |
) | |
for _ in range(serial_depths[0])] | |
) | |
# Serial blocks 2. | |
self.serial_blocks2 = nn.ModuleList([ | |
SerialBlock( | |
dim=embed_dims[1], num_heads=num_heads, mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, | |
shared_cpe=self.cpe2, shared_crpe=self.crpe2 | |
) | |
for _ in range(serial_depths[1])] | |
) | |
# Serial blocks 3. | |
self.serial_blocks3 = nn.ModuleList([ | |
SerialBlock( | |
dim=embed_dims[2], num_heads=num_heads, mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, | |
shared_cpe=self.cpe3, shared_crpe=self.crpe3 | |
) | |
for _ in range(serial_depths[2])] | |
) | |
# Serial blocks 4. | |
self.serial_blocks4 = nn.ModuleList([ | |
SerialBlock( | |
dim=embed_dims[3], num_heads=num_heads, mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, | |
shared_cpe=self.cpe4, shared_crpe=self.crpe4 | |
) | |
for _ in range(serial_depths[3])] | |
) | |
# Parallel blocks. | |
self.parallel_depth = parallel_depth | |
if self.parallel_depth > 0: | |
self.parallel_blocks = nn.ModuleList([ | |
ParallelBlock( | |
dims=embed_dims, num_heads=num_heads, mlp_ratios=mlp_ratios, qkv_bias=qkv_bias, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, | |
shared_crpes=(self.crpe1, self.crpe2, self.crpe3, self.crpe4) | |
) | |
for _ in range(parallel_depth)] | |
) | |
else: | |
self.parallel_blocks = None | |
# Classification head(s). | |
if not self.return_interm_layers: | |
if self.parallel_blocks is not None: | |
self.norm2 = norm_layer(embed_dims[1]) | |
self.norm3 = norm_layer(embed_dims[2]) | |
else: | |
self.norm2 = self.norm3 = None | |
self.norm4 = norm_layer(embed_dims[3]) | |
if self.parallel_depth > 0: | |
# CoaT series: Aggregate features of last three scales for classification. | |
assert embed_dims[1] == embed_dims[2] == embed_dims[3] | |
self.aggregate = torch.nn.Conv1d(in_channels=3, out_channels=1, kernel_size=1) | |
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
else: | |
# CoaT-Lite series: Use feature of last scale for classification. | |
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
# Initialize weights. | |
trunc_normal_(self.cls_token1, std=.02) | |
trunc_normal_(self.cls_token2, std=.02) | |
trunc_normal_(self.cls_token3, std=.02) | |
trunc_normal_(self.cls_token4, std=.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'cls_token1', 'cls_token2', 'cls_token3', 'cls_token4'} | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=''): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
def insert_cls(self, x, cls_token): | |
""" Insert CLS token. """ | |
cls_tokens = cls_token.expand(x.shape[0], -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
return x | |
def remove_cls(self, x): | |
""" Remove CLS token. """ | |
return x[:, 1:, :] | |
def forward_features(self, x0): | |
B = x0.shape[0] | |
# Serial blocks 1. | |
x1 = self.patch_embed1(x0) | |
H1, W1 = self.patch_embed1.grid_size | |
x1 = self.insert_cls(x1, self.cls_token1) | |
for blk in self.serial_blocks1: | |
x1 = blk(x1, size=(H1, W1)) | |
x1_nocls = self.remove_cls(x1) | |
x1_nocls = x1_nocls.reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous() | |
# Serial blocks 2. | |
x2 = self.patch_embed2(x1_nocls) | |
H2, W2 = self.patch_embed2.grid_size | |
x2 = self.insert_cls(x2, self.cls_token2) | |
for blk in self.serial_blocks2: | |
x2 = blk(x2, size=(H2, W2)) | |
x2_nocls = self.remove_cls(x2) | |
x2_nocls = x2_nocls.reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous() | |
# Serial blocks 3. | |
x3 = self.patch_embed3(x2_nocls) | |
H3, W3 = self.patch_embed3.grid_size | |
x3 = self.insert_cls(x3, self.cls_token3) | |
for blk in self.serial_blocks3: | |
x3 = blk(x3, size=(H3, W3)) | |
x3_nocls = self.remove_cls(x3) | |
x3_nocls = x3_nocls.reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous() | |
# Serial blocks 4. | |
x4 = self.patch_embed4(x3_nocls) | |
H4, W4 = self.patch_embed4.grid_size | |
x4 = self.insert_cls(x4, self.cls_token4) | |
for blk in self.serial_blocks4: | |
x4 = blk(x4, size=(H4, W4)) | |
x4_nocls = self.remove_cls(x4) | |
x4_nocls = x4_nocls.reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous() | |
# Only serial blocks: Early return. | |
if self.parallel_blocks is None: | |
if not torch.jit.is_scripting() and self.return_interm_layers: | |
# Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2). | |
feat_out = {} | |
if 'x1_nocls' in self.out_features: | |
feat_out['x1_nocls'] = x1_nocls | |
if 'x2_nocls' in self.out_features: | |
feat_out['x2_nocls'] = x2_nocls | |
if 'x3_nocls' in self.out_features: | |
feat_out['x3_nocls'] = x3_nocls | |
if 'x4_nocls' in self.out_features: | |
feat_out['x4_nocls'] = x4_nocls | |
return feat_out | |
else: | |
# Return features for classification. | |
x4 = self.norm4(x4) | |
x4_cls = x4[:, 0] | |
return x4_cls | |
# Parallel blocks. | |
for blk in self.parallel_blocks: | |
x2, x3, x4 = self.cpe2(x2, (H2, W2)), self.cpe3(x3, (H3, W3)), self.cpe4(x4, (H4, W4)) | |
x1, x2, x3, x4 = blk(x1, x2, x3, x4, sizes=[(H1, W1), (H2, W2), (H3, W3), (H4, W4)]) | |
if not torch.jit.is_scripting() and self.return_interm_layers: | |
# Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2). | |
feat_out = {} | |
if 'x1_nocls' in self.out_features: | |
x1_nocls = self.remove_cls(x1) | |
x1_nocls = x1_nocls.reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous() | |
feat_out['x1_nocls'] = x1_nocls | |
if 'x2_nocls' in self.out_features: | |
x2_nocls = self.remove_cls(x2) | |
x2_nocls = x2_nocls.reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous() | |
feat_out['x2_nocls'] = x2_nocls | |
if 'x3_nocls' in self.out_features: | |
x3_nocls = self.remove_cls(x3) | |
x3_nocls = x3_nocls.reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous() | |
feat_out['x3_nocls'] = x3_nocls | |
if 'x4_nocls' in self.out_features: | |
x4_nocls = self.remove_cls(x4) | |
x4_nocls = x4_nocls.reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous() | |
feat_out['x4_nocls'] = x4_nocls | |
return feat_out | |
else: | |
x2 = self.norm2(x2) | |
x3 = self.norm3(x3) | |
x4 = self.norm4(x4) | |
x2_cls = x2[:, :1] # [B, 1, C] | |
x3_cls = x3[:, :1] | |
x4_cls = x4[:, :1] | |
merged_cls = torch.cat((x2_cls, x3_cls, x4_cls), dim=1) # [B, 3, C] | |
merged_cls = self.aggregate(merged_cls).squeeze(dim=1) # Shape: [B, C] | |
return merged_cls | |
def forward(self, x): | |
if self.return_interm_layers: | |
# Return intermediate features (for down-stream tasks). | |
return self.forward_features(x) | |
else: | |
# Return features for classification. | |
x = self.forward_features(x) | |
x = self.head(x) | |
return x | |
def checkpoint_filter_fn(state_dict, model): | |
out_dict = {} | |
for k, v in state_dict.items(): | |
# original model had unused norm layers, removing them requires filtering pretrained checkpoints | |
if k.startswith('norm1') or \ | |
(model.norm2 is None and k.startswith('norm2')) or \ | |
(model.norm3 is None and k.startswith('norm3')): | |
continue | |
out_dict[k] = v | |
return out_dict | |
def _create_coat(variant, pretrained=False, default_cfg=None, **kwargs): | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
model = build_model_with_cfg( | |
CoaT, variant, pretrained, | |
default_cfg=default_cfgs[variant], | |
pretrained_filter_fn=checkpoint_filter_fn, | |
**kwargs) | |
return model | |
def coat_tiny(pretrained=False, **kwargs): | |
model_cfg = dict( | |
patch_size=4, embed_dims=[152, 152, 152, 152], serial_depths=[2, 2, 2, 2], parallel_depth=6, | |
num_heads=8, mlp_ratios=[4, 4, 4, 4], **kwargs) | |
model = _create_coat('coat_tiny', pretrained=pretrained, **model_cfg) | |
return model | |
def coat_mini(pretrained=False, **kwargs): | |
model_cfg = dict( | |
patch_size=4, embed_dims=[152, 216, 216, 216], serial_depths=[2, 2, 2, 2], parallel_depth=6, | |
num_heads=8, mlp_ratios=[4, 4, 4, 4], **kwargs) | |
model = _create_coat('coat_mini', pretrained=pretrained, **model_cfg) | |
return model | |
def coat_lite_tiny(pretrained=False, **kwargs): | |
model_cfg = dict( | |
patch_size=4, embed_dims=[64, 128, 256, 320], serial_depths=[2, 2, 2, 2], parallel_depth=0, | |
num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs) | |
model = _create_coat('coat_lite_tiny', pretrained=pretrained, **model_cfg) | |
return model | |
def coat_lite_mini(pretrained=False, **kwargs): | |
model_cfg = dict( | |
patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[2, 2, 2, 2], parallel_depth=0, | |
num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs) | |
model = _create_coat('coat_lite_mini', pretrained=pretrained, **model_cfg) | |
return model | |
def coat_lite_small(pretrained=False, **kwargs): | |
model_cfg = dict( | |
patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[3, 4, 6, 3], parallel_depth=0, | |
num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs) | |
model = _create_coat('coat_lite_small', pretrained=pretrained, **model_cfg) | |
return model |