conormack's picture
Upload app.py
f3dd217 verified
import streamlit as st
from transformers import pipeline
import torch
import time
from typing import List, Dict
import functools
import signal
class TimeoutError(Exception):
pass
def timeout(seconds):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
def handler(signum, frame):
raise TimeoutError(f"Function call timed out after {seconds} seconds")
# Set the timeout handler
signal.signal(signal.SIGALRM, handler)
signal.alarm(seconds)
try:
result = func(*args, **kwargs)
finally:
# Disable the alarm
signal.alarm(0)
return result
return wrapper
return decorator
class SourceVerifier:
def __init__(self):
self.sources: List[Dict] = []
def add_source(self, text: str, metadata: Dict) -> None:
self.sources.append({"content": text, "metadata": metadata})
def verify_statement(self, statement: str) -> Dict:
matches = []
for source in self.sources:
if any(word.lower() in source["content"].lower()
for word in statement.split()):
matches.append(source)
return {
"verified": len(matches) > 0,
"matches": matches,
"confidence": len(matches) / len(self.sources) if self.sources else 0
}
@st.cache_resource(show_spinner=False)
def load_pipeline():
try:
return pipeline(
"text-generation",
model="sshleifer/tiny-gpt2", # Tiny 2M parameter model
device="cpu", # Force CPU usage
model_kwargs={"low_memory": True}
)
except Exception as e:
st.error(f"Failed to load model: {str(e)}")
return None
@timeout(10) # 10 second timeout
def generate_response(generator, prompt: str) -> str:
try:
result = generator(
prompt,
max_length=50, # Short response
num_return_sequences=1,
temperature=0.7,
do_sample=True,
)
return result[0]['generated_text']
except TimeoutError:
return "Response generation timed out. Please try again."
except Exception as e:
return f"Error generating response: {str(e)}"
def init_page():
st.set_page_config(
page_title="Quick Chat Demo",
page_icon="πŸ’¬",
layout="centered"
)
st.title("Quick Chat Demo")
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "assistant", "content": "Hi! I'm a simple chat demo. How can I help?"}
]
if "verifier" not in st.session_state:
st.session_state.verifier = SourceVerifier()
def handle_file_upload():
uploaded_file = st.file_uploader("Upload source document", type=["txt", "md", "json"])
if uploaded_file:
try:
content = uploaded_file.read().decode()
st.session_state.verifier.add_source(
content,
{"filename": uploaded_file.name, "type": uploaded_file.type}
)
st.success(f"Added source: {uploaded_file.name}")
except Exception as e:
st.error(f"Error processing file: {str(e)}")
def main():
init_page()
# Load the model with a progress bar
with st.spinner("Loading (should take < 5 seconds)..."):
generator = load_pipeline()
if generator is None:
st.error("Failed to initialize chat. Please refresh the page.")
return
# Sidebar for document upload
with st.sidebar:
st.header("Sources")
handle_file_upload()
# Display existing messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# Chat input
if prompt := st.chat_input("Say something"):
# Add user message
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Generate response with timeout
with st.chat_message("assistant"):
with st.spinner("Responding..."):
response = generate_response(generator, prompt)
verification = st.session_state.verifier.verify_statement(response)
st.write(response)
if verification["verified"]:
with st.expander("Sources"):
st.json(verification)
st.session_state.messages.append({
"role": "assistant",
"content": response,
"verification": verification
})
if __name__ == "__main__":
main()