ndc8
commited on
Commit
Β·
994c0b4
1
Parent(s):
4b4e9ed
- backend_service.py +12 -2
- requirements.txt +3 -0
- verify_config.py +40 -0
backend_service.py
CHANGED
|
@@ -90,7 +90,7 @@ class ChatMessage(BaseModel):
|
|
| 90 |
return v
|
| 91 |
|
| 92 |
class ChatCompletionRequest(BaseModel):
|
| 93 |
-
model: str = Field(default_factory=lambda:
|
| 94 |
messages: List[ChatMessage] = Field(..., description="List of messages in the conversation")
|
| 95 |
max_tokens: Optional[int] = Field(default=512, ge=1, le=2048, description="Maximum tokens to generate")
|
| 96 |
temperature: Optional[float] = Field(default=0.7, ge=0.0, le=2.0, description="Sampling temperature")
|
|
@@ -139,7 +139,14 @@ class CompletionRequest(BaseModel):
|
|
| 139 |
|
| 140 |
|
| 141 |
# Model can be configured via environment variable - defaults to Gemma 3n (transformers format)
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
vision_model = os.environ.get("VISION_MODEL", "Salesforce/blip-image-captioning-base")
|
| 144 |
|
| 145 |
# Transformers model support
|
|
@@ -194,11 +201,13 @@ async def lifespan(app: FastAPI):
|
|
| 194 |
"""Application lifespan manager for startup and shutdown events"""
|
| 195 |
global processor, model, image_text_pipeline, current_model
|
| 196 |
logger.info("π Starting AI Backend Service (Hugging Face Spaces mode)...")
|
|
|
|
| 197 |
try:
|
| 198 |
logger.info(f"π₯ Loading model with transformers: {current_model}")
|
| 199 |
|
| 200 |
# For Gemma 3n models, use the specific classes
|
| 201 |
if "gemma-3n" in current_model.lower():
|
|
|
|
| 202 |
processor = AutoProcessor.from_pretrained(current_model)
|
| 203 |
model = Gemma3nForConditionalGeneration.from_pretrained(
|
| 204 |
current_model,
|
|
@@ -208,6 +217,7 @@ async def lifespan(app: FastAPI):
|
|
| 208 |
).eval()
|
| 209 |
else:
|
| 210 |
# Fallback for other models
|
|
|
|
| 211 |
processor = AutoTokenizer.from_pretrained(current_model)
|
| 212 |
model = AutoModelForCausalLM.from_pretrained(
|
| 213 |
current_model,
|
|
|
|
| 90 |
return v
|
| 91 |
|
| 92 |
class ChatCompletionRequest(BaseModel):
|
| 93 |
+
model: str = Field(default_factory=lambda: "google/gemma-3n-E4B-it", description="The model to use for completion")
|
| 94 |
messages: List[ChatMessage] = Field(..., description="List of messages in the conversation")
|
| 95 |
max_tokens: Optional[int] = Field(default=512, ge=1, le=2048, description="Maximum tokens to generate")
|
| 96 |
temperature: Optional[float] = Field(default=0.7, ge=0.0, le=2.0, description="Sampling temperature")
|
|
|
|
| 139 |
|
| 140 |
|
| 141 |
# Model can be configured via environment variable - defaults to Gemma 3n (transformers format)
|
| 142 |
+
# Force the correct model for Hugging Face Spaces deployment
|
| 143 |
+
ai_model_env = os.environ.get("AI_MODEL", "google/gemma-3n-E4B-it")
|
| 144 |
+
# Override GGUF models to use transformers-compatible version
|
| 145 |
+
if "GGUF" in ai_model_env:
|
| 146 |
+
current_model = "google/gemma-3n-E4B-it"
|
| 147 |
+
print(f"π Overriding GGUF model {ai_model_env} with transformers-compatible model: {current_model}")
|
| 148 |
+
else:
|
| 149 |
+
current_model = ai_model_env
|
| 150 |
vision_model = os.environ.get("VISION_MODEL", "Salesforce/blip-image-captioning-base")
|
| 151 |
|
| 152 |
# Transformers model support
|
|
|
|
| 201 |
"""Application lifespan manager for startup and shutdown events"""
|
| 202 |
global processor, model, image_text_pipeline, current_model
|
| 203 |
logger.info("π Starting AI Backend Service (Hugging Face Spaces mode)...")
|
| 204 |
+
logger.info(f"π§ Using model: {current_model}")
|
| 205 |
try:
|
| 206 |
logger.info(f"π₯ Loading model with transformers: {current_model}")
|
| 207 |
|
| 208 |
# For Gemma 3n models, use the specific classes
|
| 209 |
if "gemma-3n" in current_model.lower():
|
| 210 |
+
logger.info("π Detected Gemma 3n model - using specialized classes")
|
| 211 |
processor = AutoProcessor.from_pretrained(current_model)
|
| 212 |
model = Gemma3nForConditionalGeneration.from_pretrained(
|
| 213 |
current_model,
|
|
|
|
| 217 |
).eval()
|
| 218 |
else:
|
| 219 |
# Fallback for other models
|
| 220 |
+
logger.info("π Using standard transformers classes")
|
| 221 |
processor = AutoTokenizer.from_pretrained(current_model)
|
| 222 |
model = AutoModelForCausalLM.from_pretrained(
|
| 223 |
current_model,
|
requirements.txt
CHANGED
|
@@ -17,5 +17,8 @@ sentencepiece>=0.2.0
|
|
| 17 |
tokenizers
|
| 18 |
regex
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
# Optional: gradio for demo UI
|
| 21 |
# gradio
|
|
|
|
| 17 |
tokenizers
|
| 18 |
regex
|
| 19 |
|
| 20 |
+
# Required for Gemma 3n vision components
|
| 21 |
+
timm
|
| 22 |
+
|
| 23 |
# Optional: gradio for demo UI
|
| 24 |
# gradio
|
verify_config.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Verification script to show current model configuration
|
| 4 |
+
"""
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
def show_model_config():
|
| 8 |
+
"""Show what model will be used"""
|
| 9 |
+
print("π Model Configuration Analysis")
|
| 10 |
+
print("=" * 50)
|
| 11 |
+
|
| 12 |
+
# Check environment variable
|
| 13 |
+
ai_model_env = os.environ.get("AI_MODEL", "google/gemma-3n-E4B-it")
|
| 14 |
+
print(f"π Environment variable AI_MODEL: {ai_model_env}")
|
| 15 |
+
|
| 16 |
+
# Apply override logic
|
| 17 |
+
if "GGUF" in ai_model_env:
|
| 18 |
+
current_model = "google/gemma-3n-E4B-it"
|
| 19 |
+
print(f"π OVERRIDE: GGUF model detected, using: {current_model}")
|
| 20 |
+
print(f" Original: {ai_model_env}")
|
| 21 |
+
print(f" Fixed to: {current_model}")
|
| 22 |
+
else:
|
| 23 |
+
current_model = ai_model_env
|
| 24 |
+
print(f"β
Using: {current_model}")
|
| 25 |
+
|
| 26 |
+
print(f"\nπ― Final model that will be loaded: {current_model}")
|
| 27 |
+
|
| 28 |
+
# Check if it's Gemma 3n
|
| 29 |
+
is_gemma_3n = "gemma-3n" in current_model.lower()
|
| 30 |
+
print(f"π€ Is Gemma 3n model: {is_gemma_3n}")
|
| 31 |
+
|
| 32 |
+
if is_gemma_3n:
|
| 33 |
+
print("π Will use: AutoProcessor + Gemma3nForConditionalGeneration")
|
| 34 |
+
else:
|
| 35 |
+
print("π Will use: AutoTokenizer + AutoModelForCausalLM")
|
| 36 |
+
|
| 37 |
+
return current_model
|
| 38 |
+
|
| 39 |
+
if __name__ == "__main__":
|
| 40 |
+
show_model_config()
|