|
from typing import Dict, Any |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel |
|
import torch |
|
|
|
class EndpointHandler: |
|
def __init__(self, path="."): |
|
|
|
base_model_id = "google/gemma-2b" |
|
self.tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True) |
|
base_model = AutoModelForCausalLM.from_pretrained(base_model_id, trust_remote_code=True) |
|
self.model = PeftModel.from_pretrained(base_model, f"{path}/adapter") |
|
self.model.eval() |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model.to(self.device) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
prompt = data["inputs"] if isinstance(data, dict) else data |
|
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device) |
|
with torch.no_grad(): |
|
output = self.model.generate(**inputs, max_new_tokens=256) |
|
decoded = self.tokenizer.decode(output[0], skip_special_tokens=True) |
|
return {"generated_text": decoded} |
|
|