Spaces:
Sleeping
Sleeping
import streamlit as st | |
import openai | |
import json | |
from annotated_text import annotated_text | |
import os | |
import achivenment_standards as data | |
# OpenAI API μ€μ (νκ²½ λ³μμμ μ½μ΄μ΄) | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
#gptμ΄μ©ν΄μ μΆλ‘ ν¨μ λ§λ€κΈ° | |
def generate_annotated_text(text): | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo-16k", | |
messages=[ | |
{ | |
"role": "system", | |
"content": "μ±μ·¨κΈ°μ€ κΈ°λ° νμμ νΉμ± λ° νλ νκ° μμ±\nμ±μ·¨κΈ°μ€μ μ λ ₯νμλ©΄, ν΄λΉ μ±μ·¨κΈ°μ€μ κΈ°λ°ν νμμ νΉμ± λ° νλμ λν νκ°λ₯Ό annotated_text νμμΌλ‘ μ 곡ν©λλ€. μ±μ·¨κΈ°μ€μ 보며 νμμ νΉμ νλ, μ±μ·¨ μμ€, κ΅μ¬μ μ΄ν, κ·Έλ¦¬κ³ νμμ μλμ κ³ λ €νμ¬ μ²΄κ³μ μΌλ‘ ꡬμ±λ μΆλ ₯μ μ 곡ν©λλ€. μ£Όμ΄λ λ°λμ μλ΅ν©λλ€. \n\nμμ :\nμ λ ₯: ```μ±μ·¨κΈ°μ€: [6κ΅01-07]μλκ° μ²ν μν©μ μ΄ν΄νκ³ κ³΅κ°νλ©° λ£λ νλλ₯Ό μ§λλ€, [6κ΅01-02] μ견μ μ μνκ³ ν¨κ» μ‘°μ νλ©° ν μνλ€.```\nμΆλ ₯: ```annotated_text(\n (\"νμ μμ μ μκ°μ μΌλͺ©μμ°νκ² μ 리νλ μ΅κ΄μ΄ μμ.\", \"μλ\", \"rgba(255, 0, 0, 0.3)\"),\n (\"μ¬ν νμμ κ΄ν μ£Όμ₯νλ κΈμ°κΈ°λ₯Ό μν¨.\", \"μ±μ·¨μμ€\", \"rgba(0, 0, 255, 0.3)\"),\n (\"μΉκ΅¬μ κ³ λ―Όμ ν΄κ²°ν΄μ£Όλ μν κ·Ήμμ μλλ°©μ λ°°λ €νμ¬ ν΄κ²° κ°λ₯ν λ°©μμ μ μν¨.\", \"μν\", \"rgba(0, 128, 0, 0.3)\"),\n (\"μλκ° μ²ν μν©μ μ΄ν΄νκ³ κ³΅κ°νλ νλλ₯Ό κ°μ§κ³ μΉκ΅¬λ€κ³Ό μλ§ν κ΄κ³λ₯Ό λ§Ίκ³ κ°λ±μ μ‘°μ ν¨.\", \"κ΅μ¬μ΄ν\", \"rgba(128, 128, 128, 0.3)\"),\n (\"μ€κ° λμ΄ μκ°μ μ΄λμ₯μ μ¬μ©νλ λ°©λ² μ νκΈ°λ₯Ό μ£Όμ λ‘ ν ν μμμ μλ§μ κ·Όκ±°μ λ·λ°μΉ¨ν μ μλ μλ£λ₯Ό ν λλ‘ μμ μ μ견μ νλΉνκ² μ μνλ©΄μ λ€λ₯Έ μ¬λμ μ견μ λ₯λμ μΌλ‘ μμ©νκ³ ν¨κ³Όμ μΌλ‘ μ견μ μ‘°μ νλ λ₯λ ₯μ 보μ.\", \"μν\", \"rgba(0, 128, 0, 0.3)\"),\n (\"μλμ μ견μ μ‘΄μ€νκ³ νλ ₯νλ νλλ₯Ό 보μ.\", \"μλ\", \"rgba(255, 0, 0, 0.3)\")\n)\n```" | |
}, | |
{ | |
"role": "user", | |
"content": text | |
} | |
], | |
temperature=1, | |
max_tokens=10000, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0 | |
) | |
return response['choices'][0]['message']['content'] | |
#μ μ¬ν λ¬Έμ₯ μμ± ν¨μ | |
def generate_similar_sentences(base_sentence): | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo-16k", | |
messages=[ | |
{ | |
"role": "system", | |
"content": f"μ μ¬ν λ¬Έμ₯ μμ±\n {base_sentence}μ κΈ°λ°νμ¬ νμμ νΉμ± λ° νλμ λν νκ° μμ λ¬Έμ₯μ 30κ° μμ±ν©λλ€." | |
} | |
], | |
temperature=1, | |
max_tokens=10000, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0 | |
) | |
generated_sentences.append(response.choices[0].message['content'].strip()) | |
return generated_sentences | |
# Streamlit μ±μ μ λͺ© λ° μ€λͺ | |
st.title("μ±μ·¨κΈ°μ€ κΈ°λ° νμμ νΉμ± λ° νλ νκ° μμ±") | |
st.write("μ±μ·¨κΈ°μ€μ μ λ ₯νμλ©΄, ν΄λΉ μ±μ·¨κΈ°μ€μ κΈ°λ°ν νμμ νΉμ± λ° νλμ λν νκ°λ₯Ό \n\n [νμ νλ, μ±μ·¨ μμ€, κ΅μ¬μ μ΄ν, νμ μλ] 4κ°μ§ μμλ₯Ό μ‘°ν©νμ¬ μ 곡ν©λλ€.") | |
# μ±μ·¨κΈ°μ€ λ°μ΄ν° κ°μ Έμ€κΈ° | |
achievement_standards = data.achievement_standards | |
# νλ κ΅° μ ν λλ‘λ€μ΄ | |
grade_group = st.selectbox("νλ κ΅°μ μ ννμΈμ:", list(achievement_standards.keys())) | |
# μ νλ νλ κ΅°μ λ°λ₯Έ κ³Όλͺ© λͺ©λ‘ | |
subject_list = list(achievement_standards[grade_group].keys()) | |
subject = st.selectbox("κ³Όλͺ©μ μ ννμΈμ:", subject_list) | |
# μ νλ κ³Όλͺ©μ λ°λ₯Έ μ±μ·¨κΈ°μ€ λͺ©λ‘ | |
selected_standards = achievement_standards[grade_group][subject] | |
selected_standard = st.selectbox("μ±μ·¨κΈ°μ€μ μ ννμΈμ:", selected_standards) | |
# μ νλ μ±μ·¨κΈ°μ€μ ν μ€νΈ μ λ ₯μ°½μ κΈ°λ³Έκ°μΌλ‘ μ¬μ© | |
achievement_standard = st.text_input("μ±μ·¨κΈ°μ€ μ λ ₯:", value=selected_standard) | |
# "νκ° μμ±" λ²νΌ ν΄λ¦ μμ λμ | |
if st.button("νκ° μμ±"): | |
with st.spinner('λ΅λ³ μμ±μ€...'): | |
result = generate_annotated_text(achievement_standard) | |
# κ²°κ³Ό μΆλ ₯ | |
exec(result.replace('```', '')) | |
# annotated_text κ²°κ³Όμμ λ¬Έμ₯λ§ μΆμΆ | |
result_lines = result.split('\n') | |
sentences = [] | |
for line in result_lines: | |
if line.strip().startswith('("'): | |
sentence = line.split('",')[0].lstrip('("').strip() | |
sentences.append(sentence) | |
# λ¬Έμ₯μ λΌλμ€ λ²νΌμΌλ‘ νμ | |
selected_sentence = st.radio("λ¬Έμ₯μ μ ννμΈμ:", sentences) | |
# μ μ¬ν λ¬Έμ₯ μμ± λ²νΌ μΆκ° | |
if st.button("μ μ¬ν 문ꡬ μμ±"): | |
with st.spinner('λ¬Έμ₯ μμ±μ€...'): | |
similar_sentences = generate_similar_sentences(selected_sentence) | |
for sentence in similar_sentences: | |
st.write(sentence) | |