fluxhdupscaler / app.py
comrender's picture
Update app.py
fd70ade verified
raw
history blame
15.7 kB
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import hf_hub_download
import subprocess
import sys
import tempfile
from typing import Sequence, Mapping, Any, Union
import asyncio
import shutil
# Copy functions from FluxSimpleUpscaler.txt
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
if path is None:
path = os.getcwd()
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
parent_directory = os.path.dirname(path)
if parent_directory == path:
return None
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.insert(0, comfyui_path)
print(f"'{comfyui_path}' inserted to sys.path")
def add_extra_model_paths() -> None:
try:
from main import load_extra_path_config
except ImportError:
print("Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead.")
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
def import_custom_nodes() -> None:
import asyncio
import execution
from nodes import init_extra_nodes
import server
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
loop.run_until_complete(init_extra_nodes())
# Setup ComfyUI and custom nodes
if not os.path.exists("ComfyUI"):
subprocess.run(["git", "clone", "https://github.com/comfyanonymous/ComfyUI.git"])
subprocess.run(["pip", "install", "-r", "ComfyUI/requirements.txt"])
custom_node_path = "ComfyUI/custom_nodes/ComfyUI_UltimateSDUpscale"
if not os.path.exists(custom_node_path):
subprocess.run(["git", "clone", "https://github.com/ssitu/ComfyUI_UltimateSDUpscale.git", custom_node_path])
subprocess.run(["pip", "install", "spandrel", "kornia"])
# Create model directories
os.makedirs("ComfyUI/models/diffusion_models", exist_ok=True)
os.makedirs("ComfyUI/models/clip", exist_ok=True)
os.makedirs("ComfyUI/models/vae", exist_ok=True)
os.makedirs("ComfyUI/models/upscale_models", exist_ok=True)
# Download models if not present
diffusion_path = "ComfyUI/models/diffusion_models/flux1-dev-fp8.safetensors"
if not os.path.exists(diffusion_path):
hf_hub_download("Kijai/flux-fp8", "flux1-dev-fp8.safetensors", local_dir="ComfyUI/models/diffusion_models")
clip_l_path = "ComfyUI/models/clip/clip_l.safetensors"
if not os.path.exists(clip_l_path):
hf_hub_download("comfyanonymous/flux_text_encoders", "clip_l.safetensors", local_dir="ComfyUI/models/clip")
t5_path = "ComfyUI/models/clip/t5xxl_fp8_e4m3fn.safetensors"
if not os.path.exists(t5_path):
hf_hub_download("comfyanonymous/flux_text_encoders", "t5xxl_fp8_e4m3fn.safetensors", local_dir="ComfyUI/models/clip")
vae_path = "ComfyUI/models/vae/ae.safetensors"
if not os.path.exists(vae_path):
hf_hub_download("black-forest-labs/FLUX.1-dev", "ae.safetensors", local_dir="ComfyUI/models/vae")
esrgan_x2_path = "ComfyUI/models/upscale_models/RealESRGAN_x2.pth"
if not os.path.exists(esrgan_x2_path):
hf_hub_download("ai-forever/Real-ESRGAN", "RealESRGAN_x2.pth", local_dir="ComfyUI/models/upscale_models")
esrgan_x4_path = "ComfyUI/models/upscale_models/RealESRGAN_x4.pth"
if not os.path.exists(esrgan_x4_path):
hf_hub_download("ai-forever/Real-ESRGAN", "RealESRGAN_x4.pth", local_dir="ComfyUI/models/upscale_models")
# Add ComfyUI to path and import custom nodes
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
from folder_paths import add_model_folder_path
comfy_dir = find_path("ComfyUI")
add_model_folder_path("unet", os.path.join(comfy_dir, "models", "diffusion_models"))
import_custom_nodes()
from nodes import NODE_CLASS_MAPPINGS
css = """
#col-container {
margin: 0 auto;
max-width: 800px;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
}
"""
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 8192 * 8192
def make_divisible_by_16(size):
return ((size // 16) * 16) if (size % 16) < 8 else ((size // 16 + 1) * 16)
def process_input(input_image, upscale_factor):
w, h = input_image.size
w_original, h_original = w, h
was_resized = False
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
gr.Info(f"Requested output image is too large. Resizing input to fit within pixel budget.")
target_input_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
scale = (target_input_pixels / (w * h)) ** 0.5
new_w = max(16, int(w * scale) // 16 * 16)
new_h = max(16, int(h * scale) // 16 * 16)
input_image = input_image.resize((new_w, new_h), resample=Image.LANCZOS)
was_resized = True
return input_image, w_original, h_original, was_resized
import requests
def load_image_from_url(url):
try:
response = requests.get(url, stream=True)
response.raise_for_status()
return Image.open(response.raw)
except Exception as e:
raise gr.Error(f"Failed to load image from URL: {e}")
def tensor_to_pil(tensor):
tensor = tensor.cpu().clamp(0, 1) * 255
img = tensor.numpy().astype(np.uint8)[0]
return Image.fromarray(img)
@spaces.GPU(duration=120)
def enhance_image(
image_input,
image_url,
seed,
randomize_seed,
upscale_factor,
denoising_strength,
custom_prompt,
progress=gr.Progress(track_tqdm=True),
):
if image_input is not None:
true_input_image = image_input
elif image_url:
true_input_image = load_image_from_url(image_url)
else:
raise gr.Error("Please provide an image (upload or URL)")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
input_image, w_original, h_original, was_resized = process_input(true_input_image, upscale_factor)
if upscale_factor == 2:
upscale_model_name = "RealESRGAN_x2.pth"
else:
upscale_model_name = "RealESRGAN_x4.pth"
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
input_image.save(tmp.name)
temp_path = tmp.name
image_base = os.path.basename(temp_path)
comfy_dir = find_path("ComfyUI")
input_dir = os.path.join(comfy_dir, "input")
input_image_path = os.path.join(input_dir, image_base)
shutil.copy(temp_path, input_image_path)
with torch.inference_mode():
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
dualcliploader_res = dualcliploader.load_clip(
clip_name1="clip_l.safetensors",
clip_name2="t5xxl_fp8_e4m3fn.safetensors",
type="flux",
)
clip = get_value_at_index(dualcliploader_res, 0)
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
positive_res = cliptextencode.encode(
text=custom_prompt,
clip=clip
)
negative_res = cliptextencode.encode(
text="",
clip=clip
)
upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
upscalemodelloader_res = upscalemodelloader.load_model(
model_name=upscale_model_name
)
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
vaeloader_res = vaeloader.load_vae(vae_name="ae.safetensors")
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
unetloader_res = unetloader.load_unet(
unet_name="flux1-dev-fp8.safetensors", weight_dtype="fp8_e4m3fn"
)
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
loadimage_res = loadimage.load_image(image=image_base)
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
fluxguidance_res = fluxguidance.append(
guidance=30, conditioning=get_value_at_index(positive_res, 0)
)
ultimatesdupscale = NODE_CLASS_MAPPINGS["UltimateSDUpscale"]()
usd_res = ultimatesdupscale.upscale(
upscale_by=upscale_factor,
seed=seed,
steps=25,
cfg=1,
sampler_name="euler",
scheduler="normal",
denoise=denoising_strength,
mode_type="Linear",
tile_width=1024,
tile_height=1024,
mask_blur=8,
tile_padding=32,
seam_fix_mode="None",
seam_fix_denoise=1,
seam_fix_width=64,
seam_fix_mask_blur=8,
seam_fix_padding=16,
force_uniform_tiles=True,
tiled_decode=False,
image=get_value_at_index(loadimage_res, 0),
model=get_value_at_index(unetloader_res, 0),
positive=get_value_at_index(fluxguidance_res, 0),
negative=get_value_at_index(negative_res, 0),
vae=get_value_at_index(vaeloader_res, 0),
upscale_model=get_value_at_index(upscalemodelloader_res, 0),
)
output_tensor = get_value_at_index(usd_res, 0)
image = tensor_to_pil(output_tensor)
os.unlink(input_image_path)
os.unlink(temp_path)
target_w, target_h = w_original * upscale_factor, h_original * upscale_factor
if image.size != (target_w, target_h):
image = image.resize((target_w, target_h), resample=Image.LANCZOS)
if was_resized:
gr.Info(f"Resizing output to target size: {target_w}x{target_h}")
image = image.resize((target_w, target_h), resample=Image.LANCZOS)
resized_input = true_input_image.resize(image.size, resample=Image.LANCZOS)
return [resized_input, image]
with gr.Blocks(css=css, title="🎨 AI Image Upscaler - FLUX ComfyUI") as demo:
gr.HTML("""
<div class="main-header">
<h1>🎨 Flux Dev Image Upscaler (FP8)</h1>
<p>Upload an image or provide a URL to upscale it using FLUX FP8 with Ultimate SD Upscale</p>
<p>Using FLUX.1-dev FP8 model</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>📤 Input</h3>")
with gr.Tabs():
with gr.TabItem("📁 Upload Image"):
input_image = gr.Image(
label="Upload Image",
type="pil",
height=200
)
with gr.TabItem("🔗 Image URL"):
image_url = gr.Textbox(
label="Image URL",
placeholder="https://example.com/image.jpg",
value="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Example.jpg/800px-Example.jpg"
)
gr.HTML("<h3>🎛️ Prompt Settings</h3>")
custom_prompt = gr.Textbox(
label="Custom Prompt (optional)",
placeholder="Enter custom prompt or leave empty",
lines=2
)
gr.HTML("<h3>⚙️ Upscaling Settings</h3>")
upscale_factor = gr.Slider(
label="Upscale Factor",
minimum=1,
maximum=4,
step=1,
value=2,
info="How much to upscale the image"
)
denoising_strength = gr.Slider(
label="Denoising Strength",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.3,
info="Controls how much the image is transformed"
)
with gr.Row():
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True
)
seed = gr.Textbox(
label="Seed",
value="42",
placeholder="Enter seed value",
interactive=True
)
enhance_btn = gr.Button(
"🚀 Upscale Image",
variant="primary",
size="lg"
)
with gr.Column(scale=2):
gr.HTML("<h3>📊 Results</h3>")
result_slider = ImageSlider(
type="pil",
interactive=False,
height=600,
elem_id="result_slider",
label=None
)
enhance_btn.click(
fn=enhance_image,
inputs=[
input_image,
image_url,
seed,
randomize_seed,
upscale_factor,
denoising_strength,
custom_prompt
],
outputs=[result_slider]
)
gr.HTML("""
<div style="margin-top: 2rem; padding: 1rem; background: #f0f0f0; border-radius: 8px;">
<p><strong>Note:</strong> This upscaler uses the Flux.1-dev model. Users are responsible for obtaining commercial rights if used commercially under their license.</p>
</div>
""")
gr.HTML("""
<style>
#result_slider .slider {
width: 100% !important;
max-width: inherit !important;
}
#result_slider img {
object-fit: contain !important;
width: 100% !important;
height: auto !important;
}
#result_slider .gr-button-tool {
display: none !important;
}
#result_slider .gr-button-undo {
display: none !important;
}
#result_slider .gr-button-clear {
display: none !important;
}
#result_slider .badge-container .badge {
display: none !important;
}
#result_slider .badge-container::before {
content: "Before";
position: absolute;
top: 10px;
left: 10px;
background: rgba(0,0,0,0.5);
color: white;
padding: 5px;
border-radius: 5px;
z-index: 10;
}
#result_slider .badge-container::after {
content: "After";
position: absolute;
top: 10px;
right: 10px;
background: rgba(0,0,0,0.5);
color: white;
padding: 5px;
border-radius: 5px;
z-index: 10;
}
#result_slider .fullscreen img {
object-fit: contain !important;
width: 100vw !important;
height: 100vh !important;
position: absolute;
top: 0;
left: 0;
}
</style>
""")
gr.HTML("""
<script>
document.addEventListener('DOMContentLoaded', function() {
const sliderInput = document.querySelector('#result_slider input[type="range"]');
if (sliderInput) {
sliderInput.value = 50;
sliderInput.dispatchEvent(new Event('input'));
}
});
</script>
""")
if __name__ == "__main__":
demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860)