Spaces:
Paused
Paused
""" | |
Apply the delta weights on top of a base model. | |
Adapted from: https://github.com/lm-sys/FastChat/blob/main/fastchat/model/apply_delta.py. | |
""" | |
import argparse | |
import torch | |
from tqdm import tqdm | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
def apply_delta(base_model_path, target_model_path, delta_path): | |
print(f"Loading the base model from {base_model_path}") | |
base = AutoModelForCausalLM.from_pretrained( | |
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) | |
print(f"Loading the delta from {delta_path}") | |
delta = AutoModelForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) | |
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path, use_fast=False) | |
DEFAULT_PAD_TOKEN = "[PAD]" | |
base_tokenizer = AutoTokenizer.from_pretrained(base_model_path, use_fast=False) | |
num_new_tokens = base_tokenizer.add_special_tokens(dict(pad_token=DEFAULT_PAD_TOKEN)) | |
base.resize_token_embeddings(len(base_tokenizer)) | |
input_embeddings = base.get_input_embeddings().weight.data | |
output_embeddings = base.get_output_embeddings().weight.data | |
input_embeddings[-num_new_tokens:] = 0 | |
output_embeddings[-num_new_tokens:] = 0 | |
print("Applying the delta") | |
for name, param in tqdm(base.state_dict().items(), desc="Applying delta"): | |
assert name in delta.state_dict() | |
param.data += delta.state_dict()[name] | |
print(f"Saving the target model to {target_model_path}") | |
base.save_pretrained(target_model_path) | |
delta_tokenizer.save_pretrained(target_model_path) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--base-model-path", type=str, required=True) | |
parser.add_argument("--target-model-path", type=str, required=True) | |
parser.add_argument("--delta-path", type=str, required=True) | |
args = parser.parse_args() | |
apply_delta(args.base_model_path, args.target_model_path, args.delta_path) | |